28
Jun
积分梯度:一种新颖的神经网络可视化方法
By 苏剑林 | 2020-06-28 | 91952位读者 | 引用本文介绍一种神经网络的可视化方法:积分梯度(Integrated Gradients),它首先在论文《Gradients of Counterfactuals》中提出,后来《Axiomatic Attribution for Deep Networks》再次介绍了它,两篇论文作者都是一样的,内容也大体上相同,后一篇相对来说更易懂一些,如果要读原论文的话,建议大家优先读后一篇。当然,它已经是2016~2017年间的工作了,“新颖”说的是它思路上的创新有趣,而不是指最近发表。
所谓可视化,简单来说就是对于给定的输入$x$以及模型$F(x)$,我们想办法指出$x$的哪些分量对模型的决策有重要影响,或者说对$x$各个分量的重要性做个排序,用专业的话术来说那就是“归因”。一个朴素的思路是直接使用梯度$\nabla_x F(x)$来作为$x$各个分量的重要性指标,而积分梯度是对它的改进。然而,笔者认为,很多介绍积分梯度方法的文章(包括原论文),都过于“生硬”(形式化),没有很好地突出积分梯度能比朴素梯度更有效的本质原因。本文试图用自己的思路介绍一下积分梯度方法。
最近评论