从一个单位向量变换到另一个单位向量的正交矩阵
By 苏剑林 | 2021-06-05 | 45061位读者 | 引用这篇文章我们来讨论一个比较实用的线性代数问题:
给定两个$d$维单位(列)向量$\boldsymbol{a},\boldsymbol{b}$,求一个正交矩阵$\boldsymbol{T}$,使得$\boldsymbol{b}=\boldsymbol{T}\boldsymbol{a}$。
由于两个向量模长相同,所以很显然这样的正交矩阵必然存在,那么,我们怎么把它找出来呢?
二维
不难想象,这本质上就是$\boldsymbol{a},\boldsymbol{b}$构成的二维子平面下的向量变换(比如旋转或者镜面反射)问题,所以我们先考虑$d=2$的情形。
【理解黎曼几何】2. 从勾股定理到黎曼度量
By 苏剑林 | 2016-10-14 | 76534位读者 | 引用黎曼度量
几何,英文名是Geometry,原意是大地测量。既然是测量,就必须有参考物,还有得知道如何计算距离。
有了参照物,我们就可以建立坐标系,把每个点的坐标都写下来,至于计算距离,我们有伟大的勾股定理:
$$ds^2 = dx^2 + dy^2 \tag{1} $$
但这里我们忽略了两个问题。
第一个问题是,我们不一定使用直角坐标系,如果使用极坐标,那么应该是
$$ds^2 = dr^2 + r^2 d\theta^2 \tag{2} $$
因此可以联想,最一般的形式应该是
$$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x^1, x^2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2 \tag{3} $$
这里的$x^1,x^2$是广义坐标,使用上标而不是下标来标记序号,是为了跟传统的教材记号一致。那这公式是什么意思呢?其实很简单,正如我们没理由要求全世界都使用人民币一样,我们没必要要求世界各地都使用同一个坐标系,而更合理的做法是,每一处地方都使用自己的坐标系(局部坐标系),然后给出当地计算距离的方法。因此,上述公式正是说,在位置$(x^1, x^2)$处计算向量$(dx^1, dx^2)$的长度的公式(当地的勾股定理)是$ds^2 = E(x^1, x^2)(dx^1)^2 + 2F(x_1, x_2)dx^1 dx^2 + G(x^1, x^2)(dx^2)^2$。
封闭曲线所围成的面积:一个新技巧
By 苏剑林 | 2015-08-30 | 64746位读者 | 引用本文主要做了一个尝试,尝试不通过Green公式而实现将封闭曲线的面积与线积分相互转换。这种转换的思路,因为仅仅利用了二重积分的积分变换,较为容易理解,而且易于推广。至于这种技巧是否真正具有实际价值,还请读者评论。
假设平面上一条简单封闭曲线由以下参数方程给出:
$$\begin{equation}\left\{\begin{aligned}x = f(t)\\y = g(t)\end{aligned}\right.\end{equation}$$
其中参数$t$位于某个区间$[a,b]$上,即$f(a)=f(b),g(a)=g(b)$。现在的问题是,求该封闭曲线围成的区域的面积。
当概率遇上复变:随机游走基本公式
By 苏剑林 | 2014-04-30 | 61599位读者 | 引用傅里叶变换:只需要异想天开?
By 苏剑林 | 2014-04-25 | 44899位读者 | 引用在对数学或物理进行事后分析,往往会发现一些奇怪的现象,也有可能得到一些更为深刻有趣的结果。比如本文所要谈及的傅里叶变换,可以由一种“异想天开”的思路得来。
洛朗展式
我们知道,在原点处形态良好的函数,可以展开为泰勒级数
$$f(x)=\sum_{n=0}^{\infty}a_n x^n$$
我们发现,上面的幂都是正的,为什么不能包含$x$的负数次幂呢?比如$\frac{\sin z}{z^2}$展开为
$$\frac{1}{z}-\frac{z}{6}+\frac{z^3}{120}\dots$$
显然也是一件合理的事情。于是,结合复变函数,我们得到解析函数的洛朗展式
$$f(z)=\sum_{n=-\infty}^{+\infty}a_n z^n$$
这是函数的双边展开。其中
纠缠的时空(二):洛仑兹变换的矩阵(续)
By 苏剑林 | 2013-02-27 | 20795位读者 | 引用在上一篇文章中,我们以矩阵的方式推导出了洛仑兹变换。矩阵表述不仅仅具有形式上的美,还具有很重要的实用价值,比如可以很方便地寻找各种不变量。当洛仑兹变换用矩阵的方式表达出来后,很多线性代数中已知的理论都可以用在上边。在这篇小小的续集中,我们将尝试阐述这个思想。
本文中,继续设光速$c=1$。
我们已经得到了洛仑兹变换的矩阵形式:
\begin{equation}\left[\begin{array}{c} x\\t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}x'\\t' \end{array}\right]\end{equation}
纠缠的时空(一):洛仑兹变换的矩阵
By 苏剑林 | 2013-02-01 | 39907位读者 | 引用我现在是越来越佩服爱因斯坦了,他的相对论是他天才的思想的充分体现。只有当相对论提出之后,宏观物理的大多数现象和规律才得到了统一的描述。狭义相对论中爱因斯坦对我们速度叠加常识的否定已经显示了他莫大的勇气,而一项头脑风暴性的工作——广义相对论则将他惊人的创造力体现得完美无瑕。我是被量子力学的数学吸引的,于相对论则是被相对论美妙的逻辑体系吸引。当然,其中也有相当美妙的数学。
狭义相对论中的核心内容之一就是被称为洛仑兹变换的东西,这在相对论发表之前已经由洛仑兹推导出来了,只不过他不承认他的物理意义,也就没有就此进行一次物理革命,革命的任务则由爱因斯坦完成。很久前我就已经看过洛仑兹变换的推导,那是直接设一种线性关系来求解的。但是我总感觉那样的推导不够清晰(也许是我的理解方式有问题吧),而且没有说明狭义相对论的两条原理如何体现出现。所以在研究过矩阵之后,我就尝试用矩阵来推导洛仑兹变换,发现效果挺好的,而且我觉得能够体现出相对论中的对称性。
两条原理
1、狭义相对性原理:在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。
2、光速不变原理:所有惯性系中,真空中的光速都等于c=299 792 458 m/s,与光源运动无关。迈克耳孙-莫雷实验是其有力证明。
最近评论