达尔文的进化学说告诉我们,自然界总是在众多的生物中挑出最能够适应环境的物种,赋予它们更高的生存几率,久而久之,这些物种经过亿万年的“优胜劣汰”,进化成了今天的千奇百怪的生物。无疑,经过长期的选择,优良的形状会被累积下来,换句话讲,这些物种在某些环境适应能力方面已经达到最优或近乎最优的状态(又是一个极值问题了)。好,现在我们来考虑蘑菇。
蘑菇是一种真菌生物,一般生长在阴暗潮湿的环境中。喜欢湿润的它自然也不希望散失掉过多的水分,因此,它努力地调整自身的形状,使它的“失水”尽可能地少。假设单位面积的蘑菇的失水速度是一致的,那么问题就变成了使一个给定体积的立体表面积尽可能少的问题了。并且考虑到水平各向同性生长的问题,理想的蘑菇形状应该就是一个平面图形的旋转体。那么这个旋转体是什么呢?聪明的你是否想到了是一个球体(的一部分)呢?
重提“旋转弹簧伸长”问题(变分解法)
By 苏剑林 | 2011-04-05 | 20530位读者 | 引用感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》
在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/
今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。
BoJone在之前的《自然极值》系列已经花了一定篇幅来讲述“极值”在自然界中是多么的普遍,它能够引导我们进行某些问题的思考,从而获得简单快捷的解答。接下来,我要说的一个更加令人惊讶的“事实”:“极值”不仅仅在某些数学或物理问题上给予我们创造性的思考,它甚至构建了整个经典力学乃至于整个物理学!这不是夸大其辞,这是物理学中被称为“最小作用量原理”的一个原理,很多物理学家(如费恩曼)被它深深吸引着,甚至认为它就是“上帝创造世界的终极公式”!(关于做小作用量原理,大家不妨看一下范翔所写的《最小作用量原理与物理之美》系列文章)
话说在18世纪,欧拉和拉格朗日开创了一条独特的道路,即用变分法来研究经典力学,从而使经典力学焕发出了新的活力,也由此衍生出了一个叫“理论力学”或“分析力学”的分支。用变分法研究力学有很多的好处,变分的对象一般都是标量函数,我们只需要写出动力系统的动能与势能表达式,就可以进行一系列的研究,比如列出质点的运动方程、判断平衡点的稳定性、求周期轨道等等(由于BoJone对理论力学研究还不够深入,无法举太多例子,但请相信,其作用远远不止这些),省去了不少繁琐的矢量性分析,这些都是在变分法发明前难以研究的。
《自然极值》系列——8.极值分析
By 苏剑林 | 2010-12-26 | 47355位读者 | 引用本篇文章是《自然极值》系列最后一篇文章,估计也是2010年最后一篇文章了。在这个美好的2010年,想必大家一定收获匪浅,BoJone也在2010年成长了很多。在2010年的尾声,BoJone和科学空间都祝大家在新的一年里更加开心快乐,在科学的道路上更快速地前行。
在本文,BoJone将与大家讨论求极值的最基本原理。这一探讨思路受到了天才的费恩曼所著《费恩曼物理讲义》的启迪。我们分别对函数求极值(求导)和泛函数极值(变分)进行一些简略的分析。
一、函数求极值
对于一个函数$y=f(x)$,设想它在$x=x_0$处取到最大值,那么显然对于很小的增量$\Delta x$,有
$$f(x_0+\Delta x) \leq f(x_0)\tag{3}$$根据泰勒级数,我们有
$f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x$————(4)
最近评论