沐浴问题——调控水温
By 苏剑林 | 2011-03-08 | 26931位读者 | 引用载入正题之前,不妨闲扯一下BoJone的家...
BoJone在一些文章中已经提到过,我是一个来自农村的孩子,目前我的家也在农村。虽然生活并不能说“贫困”,家中也添置了不少电器,不过一直没有购置的就是洗衣机和热水器。洗衣机嘛,我觉得衣服自己动手洗是很好的,至少不让自己偷懒。至于热水器,因为家在农村,所以能够比较方便地弄到一些柴草,而且稻谷收割完后的桔梗也可以当燃料用,平时烧菜一般都用烧柴草,因此热水器实在没有多大必要。(很遗憾,沼气池没有能够在这里普及起来,大家可不要责怪我排放温室气体哦...^_^)
既然没有热水器,那只能人工烧水了。往往是烧好一大锅水,洗澡时盛一盆子,然后加水降温,接着就可以洗白白了。本文的问题正是来源于调水温。当水很热时,为了加快降温,我们往往“双管齐下”:一边向盆子注入冷水,一般从盆子放出热水。于是就有了一个问题:水的温度与时间成什么关系?
历史上的谜案——刘徽有没有使用外推法?
By 苏剑林 | 2011-03-12 | 32943位读者 | 引用话说当年我国古代数学家刘徽创立“割圆术”计算圆周率的事迹,在今天已被不少学生知晓;虽不能说家喻户晓,但是也为各教科书以及老师津津乐道。和古希腊的“数学之神”阿基米德同出一辙,刘徽也是使用圆的内接、外切正多边形来逼近圆形的;不一样的是,刘徽使用的方法是计算半径为1的圆的内接、外切正多边形的面积,而阿基米德计算的则是直径为1的圆的内接、外切正多边形的周长。两者的计算效果有什么区别呢?其实阿基米德的方法应该更快一点,阿基米德算到正n边形所得到的值,相当于刘徽算到正2n边形了。
在此我们不再对两者的计算方法进行区分,因为两者的本质都是一样的。按照现代数学的写法,“割圆术”的理论依据是
$$lim_{n\to \infty} n \sin(\frac{\pi}{n})=\pi\tag{1}$$
当然,刘徽不可能有现代计算正弦函数值的公式(现在计算正弦函数值一般用泰勒级数展开,而泰勒级数展开需要用到$\pi$的值),甚至在他那个时代就连笔墨也没有,据我所知即使是后来的祖冲之推算圆周率时,唯一的计算工具也只是现在称为“算筹”的小棍。不过刘徽还是凭借着超强的毅力,利用递推的方法逐步求圆周率。
重提“旋转弹簧伸长”问题(变分解法)
By 苏剑林 | 2011-04-05 | 21262位读者 | 引用感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》
在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/
今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。
《教材如何写》:BoJone的粗浅看法
By 苏剑林 | 2011-04-19 | 23225位读者 | 引用在科学空间所转载的上两篇文章中,matrix67和范翔都表达了他们对大多数现行(数学&物理)教材的不满和对编写教材的一些建议。今天,BoJone也来发发牢骚,说说教材。
首先得说明下,目前BoJone只是一个高二生,或者说,是一个爱好数学、物理的高中生,因此本文所描写的观点仅仅是个人的看法,而且应该带有诸多的不成熟看法。不论如何,谨在此提出,欢迎讨论。
BoJone认为,人类都有着追求利益的倾向,要是一样东西能够对我们有“好处”,给我们带来方便,那么我们就很乐意去拥有它,或者去学习它。数学、物理理论也应当如此,当教材编写者想要引入一个新概念或介绍一个新理论、方法时,首先要做的并不是如何从严格上定义、推导、证明、最后才去应用,而相反,他们应该要大书特书引入新概念和方法后有什么“好处”。只有了解到了它的用处之后,读者才会有明确的目的和足够的心思去进一步的学习。这一步对于一些抽象的理论的学习是很重要的,要不然,那么繁琐、枯燥的推理证明过程会抹杀掉绝大多数人的信心,纵使后来“终于”弄懂了它的用处,也兴趣倍减。说到这里,就不得不批评一下人教版数学选修教材中的一个很让人反感的做法,在《选修2-2》中它引入了复数,但仅仅简单交待了复数的加减乘除运算和模等定义后就了事,对于复数的一些精华,比如复数乘法代表着坐标旋转等,则全然不提,这样的“复数”有何意义呢?有同学问我:“学复数有什么用?”我只能回答:“就目前来说,复数的唯一作用就是增加了我们高考的负担。”
从对称角度看代数方程
By 苏剑林 | 2011-04-29 | 27982位读者 | 引用这些日子来,BoJone迷上了两个东西:最小作用量和对称。这两个“东西”在物理学中几乎占据着最重要的地位,前边已经说过,通过最小作用量原理能够构建起当代整个物理学的框架,体现着自然界的“经济头脑”;后者则是守恒的体现,也对应着自然界的“美感”。本文主要是从最简单的层面谈谈对称。
对称的东西很重要,很美。当然,这里所指的是数学上的对称。数学上有很多问题都可以列出对称的式子,而且由于其对称性,因此求解过程一般比不对称的式子简单不少。据说,当代最前沿的物理学框架都是用群论描述的(包括广义相对论),而群论正是用来研究对称的有力工具,可见,对称和对称的方法在实际中有着广泛的应用。(当然本文不讨论群论,关键是BoJone也不懂群论...^_^)
我们先来看二次方程,根据韦达定理,二次方程都可以表达成下面的形式:
$$\begin{aligned}x_1+x_2=a \\ x_1 x_2=b\end{aligned}$$
这是一个多对称的形式!这里的对称体现在将$x_1,x_2$互相替换后方程形式依然不变。如果我们设$x_1=y_1+y_2,x_2=y_1-y_2$,就可以变成
$$2y_1=a,y_1^2-y_2^2=b$$
这样很快就求出$y_1,y_2$了,继而能够求出方程的两个根。
《教材如何写》:对于教材写法的一点考虑
By 苏剑林 | 2011-04-16 | 25410位读者 | 引用转载自:eaglefantasy.com
有感于Matrix67神牛的这篇文章(强烈建议大家去读一读),我也发表一下自己对于教材编写的一点看法。
1.对线性代数的吐槽
(没学过线性代数的同学请忽略下面3段往后接着看。)
我一直觉得线性代数用那种严格公理化的语言写成课本根本不适合初学者学习,一开始学习线性代数的时候,我本人对很多概念的直观意义根本就是完全不知道。我们的课本是丘维声的《简明线性代数》,我在此毫不掩饰的表示对这本教材的鄙视:这本教材居然是按照这样的顺序讲线性代数的:线性方程组->行列式->线性方程组的进一步讨论->矩阵的运算->一大堆东西->线性空间->线性映射->一大堆东西。这个狗屁顺序直接导致我前半个学期一直以为线性代数就是研究怎么解线性方程组的,我心想,这么简单的问题,具体问题谁都会解,值得这么大动干戈的定义出这么大堆东西么。。。一直到线性空间那一个章节以前,我完全就不知道线性代数整个是在干什么..后来学的多了我才知道,其实线性代数就是研究线性空间和线性映射的嘛,什么线性方程组,根本没那么重要。一个更加合理的顺序是:先讲线性空间、线性映射,其中明确说明矩阵就是线性映射,然后再讲行列式,然后线性方程组只作为一个例子出现就可以了。
我们经常听说牛顿力学、相对论力学、量子力学等物理名词,也不时会听到“理论力学”。其实,“理论力学”这个名词是不大妥当的,因为这很容易会让人误认为这是一种新的力学体系。而事实上,理论力学并不是像牛顿力学那样是一种力学体系,而是一种研究力学的方法,而研究的对象在多数情况下依然是经典力学(翻开任意一本《理论力学》教程都不难发现这一点)。简单来讲,它把牛顿时代用微积分来研究力学的方法转变为了“变分”,变“常微分”为“偏微分”。看上去这有点“化简为繁”,但事实上这样的一个转变却带来了力学研究的一个巨大的飞跃。
说到这里,也许有的读者会感到害怕了:这里边肯定又涉及了各种高深莫测的高等数学方法,我们只能望而却步。的确,理论力学中的方法很是深奥,纵使是一个优秀的大学数理本科生,也可能要花上一年多时间才能学完一本《理论力学》。可是,通过最小作用量原理的方法去研究物理又显得如此地诱人。难道像我们这些初级人士就无法亲身体验理论力学方法给我们带来的巨大便利和不一样的体验了吗?
我们在研究地球附近的小天体运动时,如果把天体和地球看作一个二体系统,那最多只能算上一个零级近似,如果使用“地球+月球+小天体”组成的圆形限制性三体问题模型,那可以算上一个二级近似了。那么,一级近似又是什么了。BoJone认为,它就是本文将要讲的“双固定引力中心问题”了,也叫“双不动中心问题”,英文名是two fixed-center problem。这是一种特殊的限制性三体问题。在这个三体系统中,两个主天体(或称有限质量天体)固定不动,第三个小天体在两个固定的主天体吸引下运动。欧拉、拉格朗日、勒让德、雅可比等人很早就研究过这个问题。其中,欧拉最先成功地求出了这个系统的积分。[引用]
另外,双固定引力中心问题还有另外一个应用,在研究人造卫星的运动时,可以只考虑地球引力,但是由于地球不是完美的球体,把其看成一个质点其实不十分精确,要是把它拆分为两个引力源,就可以很大程度上提高精确度。毕竟双固定引力中心问题是完全可以积分的,可以作为一个比较好的中间轨道(介乎圆锥曲线和精确轨道之间的)。
最近评论