寻求一个光滑的最大值函数
By 苏剑林 | 2015-05-02 | 127803位读者 | 引用在最优化问题中,求一个函数的最大值或最小值,最直接的方法是求导,然后比较各阶极值的大小。然而,我们所要优化的函数往往不一定可导,比如函数中含有最大值函数$\max(x,y)$的。这时候就得求助于其他思路了。有一个很巧妙的思路是,将这些不可导函数用一个可导的函数来近似它,从而我们用求极值的方法来求出它近似的最优值。本文的任务,就是探究一个简单而有用的函数,它能够作为最大值函数的近似,并且具有多阶导数。下面是笔者给出的一个推导过程。
在数学分析中,笔者已经学习过一个关于最大值函数的公式,即当$x \geq 0, y \geq 0$时,我们有
$$\max(x,y)=\frac{1}{2}\left(|x+y|+|x-y|\right)\tag{1}$$
那么,为了寻求一个最大值的函数,我们首先可以考虑寻找一个能够近似表示绝对值$|x|$的函数,这样我们就把问题从二维降低到一维了。那么,哪个函数可以使用呢?
记录一次爬取淘宝/天猫评论数据的过程
By 苏剑林 | 2015-05-06 | 167277位读者 | 引用笔者最近迷上了数据挖掘和机器学习,要做数据分析首先得有数据才行。对于我等平民来说,最廉价的获取数据的方法,应该是用爬虫在网络上爬取数据了。本文记录一下笔者爬取天猫某商品的全过程,淘宝上面的店铺也是类似的做法,不赘述。主要是分析页面以及用Python实现简单方便的抓取。
笔者使用的工具如下
Python 3——极其方便的编程语言。选择3.x的版本是因为3.x对中文处理更加友好。
Pandas——Python的一个附加库,用于数据整理。
IE 11——分析页面请求过程(其他类似的流量监控工具亦可)。
剩下的还有requests,re,这些都是Python自带的库。
实例页面(美的某热水器):http://detail.tmall.com/item.htm?id=41464129793
【翻译】巨型望远镜:要继续,就得有牺牲!
By 苏剑林 | 2015-06-10 | 27299位读者 | 引用文章来自:新科学家,这是一篇关于30米望远镜(Thirty Meter Telescope,TMT)的新闻,起因是望远镜的制造遭到当地人的不满,当然背后的原因是很深远的,难以说清楚。更多有关TMT的新闻,可以阅读:http://www.ctmt.org/
夏威夷的巨型望远镜:要继续,就得有牺牲!
四分之一必须离开!在停止了两个月之后,夏威夷的巨型30米望远镜(Thirty Meter Telescope,TMT)重新回归到建设进程——但要牺牲其他望远镜。
由于夏威夷当地居民的抗议声越来越大,早在四月望远镜的建设工作就被迫暂停。与该望远镜相比,目前世界上所有的望远镜都相形见绌——它让能够让天文学家们凝视可见的宇宙的边缘。它位于许多夏威夷人认为是“神圣之地”的死火山莫纳克亚山,因此被夏威夷人认为是一种侮辱——尤其是在山顶已经有十多个望远镜了。
文本情感分类(二):深度学习模型
By 苏剑林 | 2015-08-04 | 603229位读者 | 引用最近一直在考虑一些自然语言处理问题和一些非线性分析问题,无暇总结发文,在此表示抱歉。本文要说的是对于一阶非线性差分方程(当然高阶也可以类似地做)的一种摄动格式,理论上来说,本方法可以得到任意一阶非线性差分方程的显式渐近解。
非线性差分方程
对于一般的一阶非线性差分方程
$$\begin{equation}\label{chafenfangcheng}x_{n+1}-x_n = f(x_n)\end{equation}$$
通常来说,差分方程很少有解析解,因此要通过渐近分析等手段来分析非线性差分方程的性质。很多时候,我们首先会考虑将差分替换为求导,得到微分方程
$$\begin{equation}\label{weifenfangcheng}\frac{dx}{dn}=f(x)\end{equation}$$
作为差分方程$\eqref{chafenfangcheng}$的近似。其中的原因,除了微分方程有比较简单的显式解之外,另一重要原因是微分方程$\eqref{weifenfangcheng}$近似保留了差分方程$\eqref{chafenfangcheng}$的一些比较重要的性质,如渐近性。例如,考虑离散的阻滞增长模型:
$$\begin{equation}\label{zuzhizengzhang}x_{n+1}=(1+\alpha)x_n -\beta x_n^2\end{equation}$$
对应的微分方程为(差分替换为求导):
$$\begin{equation}\frac{dx}{dn}=\alpha x -\beta x^2\end{equation}$$
此方程解得
$$\begin{equation}x_n = \frac{\alpha}{\beta+c e^{-\alpha n}}\end{equation}$$
其中$c$是任意常数。上述结果已经大概给出了原差分方程$\eqref{zuzhizengzhang}$的解的变化趋势,并且成功给出了最终的渐近极限$x_n \to \frac{\alpha}{\beta}$。下图是当$\alpha=\beta=1$且$c=1$(即$x_0=\frac{1}{2}$)时,微分方程的解与差分方程的解的值比较。
现在的问题是,既然微分方程的解可以作为一个形态良好的近似解了,那么是否可以在微分方程的解的基础上,进一步加入修正项提高精度?
“熵”不起:从熵、最大熵原理到最大熵模型(一)
By 苏剑林 | 2015-12-01 | 81305位读者 | 引用熵的概念
作为一名物理爱好者,我一直对统计力学中“熵”这个概念感到神秘和好奇。因此,当我接触数据科学的时候,我也对最大熵模型产生了浓厚的兴趣。
熵是什么?在通俗的介绍中,熵一般有两种解释:(1)熵是不确定性的度量;(2)熵是信息的度量。看上去说的不是一回事,其实它们说的就是同一个意思。首先,熵是不确定性的度量,它衡量着我们对某个事物的“无知程度”。熵为什么又是信息的度量呢?既然熵代表了我们对事物的无知,那么当我们从“无知”到“完全认识”这个过程中,就会获得一定的信息量,我们开始越无知,那么到达“完全认识”时,获得的信息量就越大,因此,作为不确定性的度量的熵,也可以看作是信息的度量,说准确点,是我们能从中获得的最大的信息量。
通过ssh动态端口转发共享校园资源(附带干货)
By 苏剑林 | 2016-03-07 | 35850位读者 | 引用众所周知,校园网最宝贵的资源应该有两样:一是IPv6,IPv6是访问Google等网站的最理想途径,当然IPv6并非所有高校都有;二是论文库,一般高校都会买了一部分论文库(知网、万方等)的下载权,供校园用户使用。如果说访问Google还有VPN等诸多方式的话,那么对于校外用户来说访问知网等资源就显得格外宝贵了,一般只是叫校内用户下载,或者就只能付费了(那个贵呀!)。
站长还是学生,在学校同时享用着IPv6和论文库资源,确实很爽。自从用上Openwrt的路由之后,一直想着怎么把校园网资源共享出去。曾经考虑过搭建PPTP VPN,但是感觉略有复杂(当然,跟其他VPN相比,搭建PPTP VPN算是非常简单的了,可是我还是不怎么喜欢。),而且当时还没解决内网穿透的问题。最近借助ssh反向代理的方式实现了内网穿透,继而认识到,通过ssh动态端口转发,居然还可以搭建代理,并且实现远程访问内网(校园网)资源,而且几乎不用在路由器本身上面做任何配置。不得不说,ssh真是一个极其强大的东西呀。
添加普通帐号
既然要共享,就没理由把root账户都分享出去了,因此,第一步要实现的是在Openwrt上添加一个代理账号,而且为了安全和保密,这个账号不允许真的登陆服务器进行操作,而只允许进行端口转发。
《量子力学与路径积分》习题解答V0.4
By 苏剑林 | 2016-01-09 | 31899位读者 | 引用《量子力学与路径积分》的习题解答终于艰难地推进到了0.4版本,目前已经基本完成了前7章的习题。
今天已经是2016年1月9号了,2015年已经远去,都忘记跟大家说一声新年快乐了,实在抱歉。在这里补充一句:祝大家新年快乐,事事如意!。
笔者已经大四了,现在是临近期末考,又临近毕业。最近忙的事情有很多,其中之一是我加入了一个互联网小公司的创业队伍中,负责文本挖掘,偶尔也写写爬虫,等等,感觉自己进去之后,增长了不少见识,也增加了不少技术知识,较之我上一次实习,又有不一样的高度。现在里边有好几样事情排队着做,可谓忙得不亦悦乎了。还有,我也开始写毕业论文了,早点写完能够多点时间,学学自己喜欢的东西,毕业论文我写的是路径积分相关的内容,自我感觉写得还是比较清楚易懂的,等时机成熟了,发出来,向大家普及路径积分^_^。此外,每天做点路径积分的习题,也要消耗不少时间,有些比较难的题目,基本一道就做几个早上才能写出比较满意的答案。总感觉想学的想做的事情有很多,可是时间很少。
最近评论