27 Aug

fashion mnist的一个baseline (MobileNet 95%)

浅尝

昨天简单试了一下在fashion mnist的gan模型,发现还能work,当然那个尝试也没什么技术水平,就是把原来的脚本改一下路径跑了就完事。今天回到fashion mnist本身的主要任务——10分类,用Keras测了一下一些模型在上面的分类效果,最后得到了94.5%左右的准确率,加上随机翻转的数据扩增能做到95%。

首先随便手写了一些模型的组合,测试发现准确率都不大好,看来对于这个数据集来说,自己构思模型是比较困难的了,于是想着用现成的模型结构。一说到现成的cnn模型,基本上我们都会想到VGG、ResNet、inception、Xception等,但这些模型为解决imagenet的1000分类问题而设计,用到这个入门级别的数据集上似乎过于庞大了,而且也容易过拟合。后来突然想起,Keras好像自带了个叫MobileNet的模型,查看了一下模型权重,发现参数量不大,但是容量应该还是可以的,故选用MobileNet做实验。

深究

点击阅读全文...

26 Aug

fashion-mnist的gan玩具

fashion_mnist_demo

fashion_mnist_demo

mnist的手写数字识别数据集一直是各种机器学习算法的试金石之一,最近有个新的数据集要向它叫板,称为fashion-mnist,内容是衣服鞋帽等分类。为了便于用户往fashion-mnist迁移,作者把数据集做成了几乎跟mnist手写数字识别数据集一模一样——同样数量、尺寸的图片,同样是10分类,甚至连数据打包和命名都跟mnist一样。看来fashion mnist为了取代mnist,也是拼了,下足了功夫,一切都做得一模一样,最大限度降低了使用成本~这叫板的心很坚定呀。

叫板的原因很简单——很多人吐槽,如果一个算法在mnist没用,那就一定没用了,但如果一个算法在mnist上有效,那它也不见得在真实问题中有效~也就是说,这个数据集太简单,没啥代表性。

fashion-mnist的github:https://github.com/zalandoresearch/fashion-mnist/

点击阅读全文...

8 Aug

【备忘】谈谈dropout

其实这只是一篇备忘...

dropout是深度学习中防止过拟合的一项有效措施,当然,就其思想而言,dropout其实也不仅仅可以用在深度学习中,还可以用在传统的机器学习方法中,只不过在深度学习的神经网络框架下,dropout显得更为自然罢了。

做了什么

dropout是怎么操作的?一般来做,对于输入的张量$x$,dropout就是将部分元素置零,然后将置零后的结果做一个尺度变换。具体来说,以Keras的Dropout(0.6)(x)为例,实际上等价于numpy做的这件事情

import numpy as np

x = np.random.random((10,100)) #模拟一个batch_size=10、维度为100的输入
def Dropout(x, drop_proba):
    return x*np.random.choice(
                              [0,1], 
                              x.shape,  
                              p=[drop_proba,1-drop_proba]
                             )/(1.-drop_proba)

print Dropout(x, 0.6)

点击阅读全文...

6 Aug

【不可思议的Word2Vec】6. Keras版的Word2Vec

前言

看过我之前写的TF版的Word2Vec后,Keras群里的Yin神问我有没有Keras版的。事实上在做TF版之前,我就写过Keras版的,不过没有保留,所以重写了一遍,更高效率,代码也更好看了。纯Keras代码实现Word2Vec,原理跟《【不可思议的Word2Vec】5. Tensorflow版的Word2Vec》是一样的,现在放出来,我想,会有人需要的。(比如,自己往里边加一些额外输入,然后做更好的词向量模型?)

由于Keras同时支持tensorflow、theano、cntk等多个后端,这就等价于实现了多个框架的Word2Vec了。嗯,这样想就高大上了,哈哈~

代码

点击阅读全文...