很早以前我就对这个问题感兴趣了,但是一直搁置着,没有怎么研究。最近在阅读《引力与时空》的“潮汐力”那一节时重新回到了这个问题上,决定写点什么东西。在这里不深究流体静力平衡的定义,顾名思义地理解,它就是流体在某个特定的力场下所达到的平衡状态。流体静力学告诉我们:
达到流体静力平衡时,流体的面必定是一个等势面。
这是为什么呢?我们从数学的角度来简单分析一下:只考虑二维情况,假如等势面方程是$U(x,y)=C$,那么两边微分就有
$$0=dU=\frac{\partial U}{\partial x}dx+\frac{\partial U}{\partial y}dy=(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})\cdot (dx,dy)$$
这意味着向量$(\frac{\partial U}{\partial x},\frac{\partial U}{\partial y})$和向量$(dx,dy)$是垂直的,前者便是力的函数,后者就是一个切向量(三维就是一个切平面)。也就是说合外力必然和流体面垂直,这样才能提供一个相等的方向相反的内力让整个结构体系处于平衡状态!
太阳中心的压强和温度
By 苏剑林 | 2010-07-19 | 32702位读者 | 引用为了准备IOAA,同时也加深对天体物理的理解,所以就系统地学习一下天体物理学了。今天看到“太阳”这一章,并由此简单估算了一下太阳的中心压强和温度。
天体物理学给出了关于恒星结构的一些方程。假设存在一颗各项同性的球形恒星,则有
$\frac{dm(r)}{dr}=4\pi r^2 \rho(r)$————质量方程
其中m(r)是与恒星球心距离为r的一个球形区域内的总质量,$\rho(r)$是距离球心r处的物质的密度。我们也可以写成积分的形式
$$m(r)=\int_0^R 4\pi r^2 \rho(r)dr$$
其中R是恒星半径。这个方程的意思其实就是每一个壳层的质量叠加,所以就不详细推导了。
最近评论