相对论、对称和第四维
By 苏剑林 | 2012-05-01 | 82925位读者 | 引用这篇文章其实在年初就完成了。
众所周知,我们生活在一个平坦的世界中。正如我们能够感受到的那样,在这个被称为“欧几里得平直空间”的世界里,空间里两点间的最短曲线是两点间的直线段,空间里的任意直角三角形都满足勾股定理,每个物体都有着自己的长、宽、高,它们都随着时间的流逝而运动着。这种世界观把时间独立于空间之外,作为一个独特的研究对象。但是自爱因斯坦在1905年发表狭义相对论以来,我们的宇宙就被描述成为了由三维空间和一维时间组成的“四维时空”,在这里,时间和空间的地位是等价的。不少同好们也许会感到非常困惑:即使证明了时间与空间的确存在着某种联系,也不必要把时间描述成是世界的一维吧?在我们的感官里,时间明明就和空间的三维差别甚大,时间和空间怎么能够等同起来呢?其实答案很简单:为了美。把时间看成与空间等价的一维之后,整个力学体系体现出一种前所未有的对称美,这种美不仅让人赏心悦目,而且极大地方便了我们进一步处理问题。
对称
今天上体育课的时候,BoJone与同学们正兴致勃勃地打着篮球,不料临近下课之时,同学猛一击(当然只是无意摩擦,没有恶意),我感到一阵猛疼——眼角处的肉破裂了!开始的一分钟内不停流血,奇怪的是到了校医室之后血就止住了(还没有经过任何处理,只是一直按住)。本以为只是小伤,简单处理就好,谁知校医说需要到外边的医院缝针,否则可能留疤毁容!!
既然如此严重,无奈只能服从了,简单处理伤口后就和母亲一起到了医院,缝了两针。由于接下来两天都得去医院消毒清洗伤口,所以干脆就请假回家了,周一再上学吧(貌似我在学校也仅仅是自学,没有多大区别^_^)...不过从受伤到现在,我还没有机会看到我的伤口究竟咋样...
最近评论