18 Dec

黑洞融合的简单模拟

在天文爱好者眼中,黑洞是一个球体,其半径为$\frac{2GM}{c^2}$;这是广义相对论的施瓦兹黑洞的结果,也从经典力学推导推导出来,虽然用经典力学是错误的,但是对于多数的天文爱好者(包括笔者)来说,这是目前唯一的一种可行的理解方法(广义相对论那些复杂推导会让我们很崩溃的)。当然,事实上,黑洞不是一个球体,它只是一个密度很大的点。至于密度有多大,目前公认的说法是无穷大,但是严格的物理是不接受这个说法的,或者说,物理是不会接受任何无穷大的说法,所以现在积极发展量子引力理论来统一相对论和量子力学,不过这是另话了。$\frac{2GM}{c^2}$只不过是黑洞的视界,视界之内,我们就什么也不知道了。本文主要就从经典力学的角度探讨一下两个黑洞的合并过程中其视界的变化。读者将会发现,这些视界的形状相当有趣。

经典力学中的黑洞是这样定义的:天体表面的逃逸速度超过了光速,于是连光都无法逃脱,所以这个“洞”就很黑。也就是说,光子的总能量(引力势能与动能之和,经典力学意义下的)要为负,负数表示受到束缚。用数学公式来讲,就是:

$$\frac{1}{2}mc^2 - \frac{GM_1 m}{r_1}-\frac{GM_2 m}{r_2}-...-\frac{GM_n m}{r_n} \leq 0$$

点击阅读全文...

16 Jan

轻微的扰动——摄动法简介(1)

为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。

其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。

摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:

一、求解方程:$\varepsilon x^3+x^2=p^2$

点击阅读全文...

16 Jan

新科学家:割裂时间空间,统一相对论量子论

这篇文章源于《新科学家》2010年8月7日刊,它介绍了物理学家Horava为了统一相对论和量子力学,把广义相对论的时空联系割裂的尝试。在相对论中,时间和空间结合成了不可分割的整体。而现在,有物理学家却要把时间与空间分开,来建立让广义相对论和量子力学相调和的统一理论。我对这个理论挺感兴趣的,当然,我还没有能力弄懂它。只是它符合了我们大多数人的一个直觉,就是时间总有跟空间不同的地方,它们之间不应该完全等同起来。不过,事实如何,只有未来的实验能够严重了。

本文并没有官方的中文译文,现载的译文来自“译言网”。译文有一些翻译不大正当的地方,由于时间限制,无法一一修正,但是我觉得对于理解本文内容已经足够了。如果有疑问,不妨参考后边的英文原文,并在此提出与大家讨论。

对爱因斯坦的反思:空间-时间耦合的物理数学的终结

纠结于融合引力和量子力学的物理学家们正向着一个受到铅笔芯启发的理论欢呼雀跃,这个理论可以很简单地让他们取得成功。

它曾是一个改变了我们思考空间和时间的方式的报告。那一年是1908年,德国数学家赫尔曼-闵可夫斯基正尝试着理解爱因斯坦火热的新思想——即我们现在所熟知的狭义相对论,它描述当物质运动很快时它们是如何收缩以及时间是如何扭曲的。“从此独立的空间和时间将注定淡出到纯粹的虚幻中,”闵可夫斯基说道:“而只有两者的统一才能保证一个独立的现实世界。”

点击阅读全文...

1 Feb

大学,如水年华

小时候总是听到“光阴似箭”,却总是觉得时间过得飞快,尤其是放假的时间迟迟不来。而现在,随着年龄的增长,我却发现,想要留住时间,如同抽刀断水一般,无济于事。尤其是美好的时刻,稍瞬即逝。大学,上学、军训的情况依然清晰在目,犹如发生在昨天,而现在已经是寒假了。有时我会怀疑是不是我的记忆力增强了,却发现没有这回事。原来,真相只有一个:光阴似箭!

我不喜欢仔细地规划自己的人生,因为未来太多未知了,也许你今天发现这方面很有趣,明天又会发现另一方面很有趣,所以我只知道我尽力做好当前喜欢做的事情就行。因此,在上大学之前,我也没有对大学想太多。想象中的大学是一个静静自修的教室加上一个丰富的图书馆而已。来到华师,确实有点意外,也有点遗憾,但是,仅此而已。虽然以前努力过要奔向更优秀的大学,但是这已经成为我宝贵的经验。以后在和朋友聊天时,我又多了一个话题。这不得不说是一件很美妙的事情!

点击阅读全文...

2 Feb

网友:椭圆定长弦中点轨迹的一种解法

大概在半年前,我曾用“化圆法”解决了椭圆内定长弦中点轨迹问题,求出了轨迹方程。前几天,我收到了网名为“理想”的网友的Email,他提出了自己对这个问题的解法,并得到了形式不同的轨迹方程,因此对两者的等价性表示疑惑。经过检验,我跟他的轨迹方程基本上是等价的,不过,他求出的轨迹方程总包括了原点,这是一点不足之处。但是看起来,他的轨迹方程却感觉好看一些。这的确很让人意外,因为从他的化简过程来看,有种“化简为繁”的味道,却得出了相当简洁的答案,着实有趣。

经过网友的同意,将他的过程贴在这里与大家分享!后面附有pdf文档,欢迎下载阅读。希望在科学空间可以看到更多的读者留下的痕迹。

椭圆定长弦中点轨迹的一种解法

作者:理想

本文介绍了一种计算椭圆定长弦中点轨迹的方法。设椭圆长、短轴分别为$2a$、$2b$,弦长为$2r$,随着弦的两端在椭圆上滑动,弦的中点形成的轨迹为:
$$(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1)(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{r^2}{a^2b^2}) + \frac{r^2}{a^2b^2} = 0$$
它不是一个椭圆,而是一个高次曲线。

点击阅读全文...

3 Feb

关于“平衡态公理”的更正与思考

在《自然极值》系列文章中,我引用了《数学方法论与解题研究》(张雄,李得虎编著)中提到的“平衡态公理”,并用它来解决了一些数学物理问题。平衡态公理讲的是系统的平衡状态总是在势能取极(小)值时取到,简单来讲就是自然界总向势能更低的方向发展,比如“水往低处流”。这在经典力学中本身是没有任何问题的,但在有些时候,我们在应用的时候可能会不自觉地将它想象成为“系统的平衡状态总是在总能量取极(小)值时取到”。然而,这却是不正确的。本文就是要探讨这个问题。

先来看看平衡态公理的来源。从最小作用量原理出发,考虑保守系统,每一个系统都应该对应着一个取极值的作用量S:
$$S=\int_{t_1}^{t_2} L(x,\dot{x})dt$$

点击阅读全文...

7 Mar

高斯型积分的微扰展开(二)

为什么第二篇姗姗来迟?

其实要写这系列之前,我已经构思好了接下来几篇的内容,本来想要自信地介绍自己想到的一些积分展开的技巧;而且摄动法我本身就比较熟悉,所以正常来说不会这么迟才有第二篇。然而,在我写完第一篇,准备写第二篇的期间,我看到了知乎上的这篇回复:
http://www.zhihu.com/question/24735673

这篇文章大大地拓展了我对级数的认识。里边谈及到了积分的展开是一个渐近级数。这让我犹豫了,怀疑这系列有没有价值,因为渐近级数意味着不管怎样的展开技巧,得到的级数收敛半径都是0。

后来再想想,就算是渐近级数,也有改进的空间,有加速收敛的方法,所以我想我这几篇文章,应该还有一点点意义吧,还可以顺便介绍一下渐近级数和奇点的相关理论。嗯,就这么办吧。

点击阅读全文...

7 Mar

轻微的扰动——摄动法简介(3)

微分方程领域大放光彩

虽然微分方程在各个计算领域都能一展才华,不过它最辉煌的光芒无疑绽放于微分方程领域,包括常微分方程和偏微分方程。海王星——“笔尖上发现的行星”——就是摄动法的著名成果,类似的还有冥王星的发现。天体力学家用一颗假设的行星的引力摄动来解释已知行星的异常运动,并由此反推未知行星的轨道。我们已不止一次提到过,一般的三体问题是混沌的,没有精确的解析解。这就要求我们考虑一些近似的方法,这样的方法发展起来就成为了摄动理论。

跟解代数方程一样,摄动法解带有小参数或者大参数的微分方程的基本思想,就是将微分方程的解表达为小参数或大参数的幂级数。当然,这是最直接的,也相当好理解,不过所求得的级数解有可能存在一些性态不好的情况,比如有时原解应该是一个周期运动,但是级数解却出现了诸如$t \sin t$的“长期项”,这是相当不利的,因此也发展出各种技巧来消除这些项。可见,摄动理论是一门应用广泛、集众家所大成的实用理论。下面我们将通过一些实际的例子来阐述这个技巧。

点击阅读全文...