基于双向GRU和语言模型的视角情感分析
By 苏剑林 | 2016-12-01 | 90819位读者 | 引用前段时间参加了一个傻逼的网络比赛——基于视角的领域情感分析,主页在这里。比赛的任务是找出一段话的实体然后判断情感,比如“我喜欢本田,我不喜欢丰田”这句话中,要标出“本田”和“丰田”,并且站在本田的角度,情感是积极的,站在丰田的角度,情感就是消极的。也就是说,等价于将实体识别和情感分析结合起来了。
吐槽
看起来很高端,哪里傻逼了?比赛任务本身还不错,值得研究,然而官方却很傻逼,主要体现为:1、比赛分初赛、复赛、决赛三个阶段,初赛一个多月时间,然后筛选部分进入复赛,复赛就简单换了一点数据,题目、数据的领域都没有变化,复赛也是一个月的时间,这傻逼复赛究竟有什么意义?2、大家可以看看选手们在群里讨论什么:
fashion mnist的一个baseline (MobileNet 95%)
By 苏剑林 | 2017-08-27 | 84111位读者 | 引用浅尝
昨天简单试了一下在fashion mnist的gan模型,发现还能work,当然那个尝试也没什么技术水平,就是把原来的脚本改一下路径跑了就完事。今天回到fashion mnist本身的主要任务——10分类,用Keras测了一下一些模型在上面的分类效果,最后得到了94.5%左右的准确率,加上随机翻转的数据扩增能做到95%。
首先随便手写了一些模型的组合,测试发现准确率都不大好,看来对于这个数据集来说,自己构思模型是比较困难的了,于是想着用现成的模型结构。一说到现成的cnn模型,基本上我们都会想到VGG、ResNet、inception、Xception等,但这些模型为解决imagenet的1000分类问题而设计,用到这个入门级别的数据集上似乎过于庞大了,而且也容易过拟合。后来突然想起,Keras好像自带了个叫MobileNet的模型,查看了一下模型权重,发现参数量不大,但是容量应该还是可以的,故选用MobileNet做实验。
深究
python简单实现gillespie模拟
By 苏剑林 | 2018-06-07 | 75682位读者 | 引用提速不掉点:基于词颗粒度的中文WoBERT
By 苏剑林 | 2020-09-18 | 120127位读者 | 引用当前,大部分中文预训练模型都是以字为基本单位的,也就是说中文语句会被拆分为一个个字。中文也有一些多颗粒度的语言模型,比如创新工场的ZEN和字节跳动的AMBERT,但这类模型的基本单位还是字,只不过想办法融合了词信息。目前以词为单位的中文预训练模型很少,据笔者所了解到就只有腾讯UER开源了一个以词为颗粒度的BERT模型,但实测效果并不好。
那么,纯粹以词为单位的中文预训练模型效果究竟如何呢?有没有它的存在价值呢?最近,我们预训练并开源了以词为单位的中文BERT模型,称之为WoBERT(Word-based BERT,我的BERT!),实验显示基于词的WoBERT在不少任务上有它独特的优势,比如速度明显的提升,同时效果基本不降甚至也有提升。在此对我们的工作做一个总结。
有限内存下全局打乱几百G文件(Python)
By 苏剑林 | 2021-09-08 | 77189位读者 | 引用这篇文章我们来做一道编程题:
如何在有限内存下全局随机打乱(Shuffle)几百G的文本文件?
题目背景其实很明朗,现在预训练模型动辄就几十甚至几百G语料了,为了让模型能更好地进行预训练,对训练语料进行一次全局的随机打乱是很有必要的。但对于很多人来说,几百G的语料往往比内存还要大,所以如何能在有限内存下做到全局的随机打乱,便是一个很值得研究的问题了。
已有工具
假设我们的文件是按行存储的,也就是一行代表一个样本,我们要做的就是按行随机打乱文件。假设我们只有一个文件,并且这个文件大小明显小于内存,那么我们可以用linux自带的shuf
命令:
shuf input.txt -o output.txt
两本通俗读物:混沌和对称
By 苏剑林 | 2011-05-28 | 18480位读者 | 引用第一本:《天遇——混沌与稳定性的起源》
一个天体力学中的N体问题的研究,竟然发展出了如此多的现代数学理论,这不能不说是一个令人意外的事情。而事实上,N体问题至今仍是无解,这也许并非坏事,因为未被完全攻克,就意味着“N体问题”仍然还是一只“会下金蛋的母鸡”!
本书是普林斯顿文集之一。作者通过大众化的语言,叙述了天体力学和动力系统理论的历史发展,让读者感到其中那激动人心的故事。BoJone认为,要想了解分析动力学(尤其是天体力学)的发展,本书是一本难得的读物。作为混沌和稳定性理论的入门前读物,本书也是非常适合的。读历史的关键是:学会思想!
最近评论