16 Nov

为什么勒贝格积分比黎曼积分强?

学过实变函数的朋友,总会知道有个叫勒贝格积分的东西,号称是黎曼积分的改进版。虽然“实变函数学十遍,泛函分析心泛寒”,在学习实变函数的时候,我们通常都是云里雾里的,不过到最后,在老师的“灌溉”之下,也就耳濡目染了知道了一些结论,比如“黎曼可积的函数(在有限区间),也是勒贝格可积的”,说白了,就是“勒贝格积分比黎曼积分强”。那么,问题来了,究竟强在哪儿?为什么会强?

黎曼

黎曼

勒贝格

勒贝格

这个问题,笔者在学习实变函数的时候并没有弄懂,后来也一直搁着,直到最近认真看了《重温微积分》之后,才有了些感觉。顺便说,齐民友老师的《重温微积分》真的很赞,值得一看。

本是同根生,相煎何太急?

点击阅读全文...

11 Jan

狄拉克函数:级数逼近

魏尔斯特拉斯定理

将狄拉克函数理解为函数的极限,可以衍生出很丰富的内容,而且这些内容离严格的证明并不遥远。比如,定义
$$\delta_n(x)=\left\{\begin{aligned}&\frac{(1-x^2)^n}{I_n},x\in[-1,1]\\
&0,\text{其它情形}\end{aligned}\right.$$
其中$I_n = \int_{-1}^1 (1-x^2)^n dx$,于是不难证明
$$\delta(x)=\lim_{n\to\infty}\delta_n(x)$$
这样,对于$[a,b]$上的连续函数$f(x)$,我们就得到
$$f(x)=\int_{-1}^1 f(y)\delta(x-y)dy = \lim_{n\to\infty}\int_{-1}^1 f(y)\delta_n(x-y) dy$$
这里$-1 < a < b < 1$,并且我们已经“不严谨”地交换了积分号和极限号,但这不是特别重要。重要的是它的结果:可以看到
$$P_n(x)=\int_{-1}^1 f(y)\delta_n(x-y) dy$$
是$x$的一个$2n$次多项式,因此上式表明$f(x)$是一个$2n$次的多项式的极限!这就引出了著名的“魏尔斯特拉斯定理”:

闭区间上的连续函数都可以用多项式一致地逼近。

点击阅读全文...

30 Mar

文本情感分类(四):更好的损失函数

文本情感分类其实就是一个二分类问题,事实上,对于分类模型,都会存在这样一个毛病:优化目标跟考核指标不一致。通常来说,对于分类(包括多分类),我们都会采用交叉熵作为损失函数,它的来源就是最大似然估计(参考《梯度下降和EM算法:系出同源,一脉相承》)。但是,我们最后的评估目标,并非要看交叉熵有多小,而是看模型的准确率。一般来说,交叉熵很小,准确率也会很高,但这个关系并非必然的。

要平均,不一定要拔尖

一个更通俗的例子是:一个数学老师,在努力提高同学们的平均分,但期末考核的指标却是及格率(60分及格)。假如平均分是100分(也就意味着所有同学都考到了100分),那么自然及格率是100%,这是最理想的。但现实不一定这么美好,平均分越高,只要平均分还没有达到100,那么及格率却不一定越高,比如两个人分别考40和90,那么平均分就是65,及格率只有50%;如果两个人的成绩都是60,平均分就是60,及格率却有100%。这也就是说,平均分可以作为一个目标,但这个目标并不直接跟考核目标挂钩。

那么,为了提升最后的考核目标,这个老师应该怎么做呢?很显然,首先看看所有学生中,哪些同学已经及格了,及格的同学先不管他们,而针对不及格的同学进行补课加强,这样一来,原则上来说有很多不及格的同学都能考上60分了,也有可能一些本来及格的同学考不够60分了,但这个过程可以迭代,最终使得大家都在60分以上,当然,最终的平均分不一定很高,但没办法,谁叫考核目标是及格率呢?

点击阅读全文...

17 May

如何“扒”站?手把手教你爬百度百科~

最近有需求要爬一些儿童故事类的语料用来训练词向量,因此找了一些童话故事网把整站的童话文章爬了下来。下面分享一下用Python实现的这个过程,并把之前爬取百度百科的经验,结合着分享出来。本教程适合于以下需求:需要遍历爬取指定的网站、并且指定网站没有反爬虫措施。在这种前提之下,所考验我们的仅仅是遍历算法编程技巧了。

假设

再次表明我们的假设:

1、需要遍历整个网站来爬取我们需要的信息;

2、网站没有反爬虫措施;

3、网站的所有页面,总可以通过网站首页,逐步点击超链接来到达。

点击阅读全文...

27 May

【不可思议的Word2Vec】5. Tensorflow版的Word2Vec

本文封装了一个比较完整的Word2Vec,其模型部分使用tensorflow实现。本文的目的并非只是再造一次Word2Vec这个轮子,而是通过这个例子来熟悉tensorflow的写法,并且测试笔者设计的一种新的softmax loss的效果,为后面研究语言模型的工作做准备。

不同的地方

Word2Vec的基本的数学原理,请移步到《【不可思议的Word2Vec】 1.数学原理》一文查看。本文的主要模型还是CBOW或者Skip-Gram,但在loss设计上有所不同。本文还是使用了完整的softmax结构,而不是huffmax softmax或者负采样方案,但是在训练softmax时,使用了基于随机负采样的交叉熵作为loss。这种loss与已有的nce_loss和sampled_softmax_loss都不一样,这里姑且命名为random softmax loss。

另外,在softmax结构中,一般是$\text{softmax}(Wx+b)$这样的形式,考虑到$W$矩阵的形状事实上跟词向量矩阵的形状是一样的,因此本文考虑了softmax层与词向量层共享权重的模型(这时候直接让$b$为0),这种模型等效于原有的Word2Vec的负采样方案,也类似于glove词向量的词共现矩阵分解,但由于使用了交叉熵损失,理论上收敛更快,而且训练结果依然具有softmax的预测概率意义(相比之下,已有的Word2Vec负样本模型训练完之后,最后模型的输出值是没有意义的,只有词向量是有意义的。)。同时,由于共享了参数,因此词向量的更新更为充分,读者不妨多多测试这种方案。

点击阅读全文...

3 Sep

开学啦!咱们来做完形填空~(讯飞杯)

前言

从今年开始,CCL会议将计划同步举办评测活动。笔者这段时间在一创业公司实习,公司也报名参加这个评测,最后实现上就落在我这里,今年的评测任务是阅读理解,名曰《第一届“讯飞杯”中文机器阅读理解评测》。虽说是阅读理解,但事实上任务比较简单,是属于完形填空类型的,即一段材料中挖了一个空,从上下文中选一个词来填入这个空中。最后我们的模型是单系统排名第6,验证集准确率为73.55%,测试集准确率为75.77%,大家可以在这里观摩排行榜。(“广州火焰信息科技有限公司”就是文本的模型)

事实上,这个数据集和任务格式是哈工大去年提出的,所以这次的评测也是哈工大跟科大讯飞一起联合举办的。哈工大去年的论文《Consensus Attention-based Neural Networks for Chinese Reading Comprehension》就研究过另一个同样格式但不同内容的数据集,是用通用的阅读理解模型做的(通用的阅读理解是指给出材料和问题,从材料中找到问题的答案,完形填空可以认为是通用阅读理解的一个非常小的子集)。

虽然,在这次评测任务的介绍中,评测方总有意无意地引导我们将这个问题理解为阅读理解问题。但笔者觉得,阅读理解本身就难得多,这个就一完形填空,只要把它作为纯粹的完形填空题做就是了,所以本文仅仅是采用类似语言模型的做法来做。这种做法的好处是思路简明直观,计算量低(在笔者的GTX1060上可以跑到batch size为160),便于实验。

模型

回到模型上,我们的模型其实比较简单,完全紧扣了“从上下文中选一个词来填空”这一思想,示意图如下。

完形填空模型

完形填空模型

点击阅读全文...

22 Jul

Keras中自定义复杂的loss函数

Keras是一个搭积木式的深度学习框架,用它可以很方便且直观地搭建一些常见的深度学习模型。在tensorflow出来之前,Keras就已经几乎是当时最火的深度学习框架,以theano为后端,而如今Keras已经同时支持四种后端:theano、tensorflow、cntk、mxnet(前三种官方支持,mxnet还没整合到官方中),由此可见Keras的魅力。

Keras是很方便,然而这种方便不是没有代价的,最为人诟病之一的缺点就是灵活性较低,难以搭建一些复杂的模型。的确,Keras确实不是很适合搭建复杂的模型,但并非没有可能,而是搭建太复杂的模型所用的代码量,跟直接用tensorflow写也差不了多少。但不管怎么说,Keras其友好、方便的特性(比如那可爱的训练进度条),使得我们总有使用它的场景。这样,如何更灵活地定制Keras模型,就成为一个值得研究的课题了。这篇文章我们来关心自定义loss。

输入-输出设计

Keras的模型是函数式的,即有输入,也有输出,而loss即为预测值与真实值的某种误差函数。Keras本身也自带了很多loss函数,如mse、交叉熵等,直接调用即可。而要自定义loss,最自然的方法就是仿照Keras自带的loss进行改写。

点击阅读全文...

19 Nov

更别致的词向量模型(五):有趣的结果

最后,我们来看一下词向量模型$(15)$会有什么好的性质,或者说,如此煞费苦心去构造一个新的词向量模型,会得到什么回报呢?

模长的含义

似乎所有的词向量模型中,都很少会关心词向量的模长。有趣的是,我们上述词向量模型得到的词向量,其模长还能在一定程度上代表着词的重要程度。我们可以从两个角度理解这个事实。

在一个窗口内的上下文,中心词重复出现概率其实是不大的,是一个比较随机的事件,因此可以粗略地认为
\[P(w,w) \sim P(w)\tag{24}\]
所以根据我们的模型,就有
\[e^{\langle\boldsymbol{v}_{w},\boldsymbol{v}_{w}\rangle} =\frac{P(w,w)}{P(w)P(w)}\sim \frac{1}{P(w)}\tag{25}\]
所以
\[\Vert\boldsymbol{v}_{w}\Vert^2 \sim -\log P(w)\tag{26}\]
可见,词语越高频(越有可能就是停用词、虚词等),对应的词向量模长就越小,这就表明了这种词向量的模长确实可以代表词的重要性。事实上,$-\log P(w)$这个量类似IDF,有个专门的名称叫ICF,请参考论文《TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams》。

点击阅读全文...