宇宙驿站感谢国家天文台LAMOST项目之“宇宙驿站”提供网络空间和数据库资源! 感谢国家天文台崔辰州博士等人的多方努力和技术支持!

版权科学空间致力于知识分享,所以欢迎您转载本站文章,但转载本站内容必须遵循 署名-非商业用途-保持一致 的创作共用协议。

参与科学空间

为了保证你的利益,推荐你注册为本站会员。同时欢迎通过邮件或留言进行交流、建议或反馈科学空间的问题。
会员注册 会员登录 查看全站文章归档页

7 Nov

【外微分浅谈】6. 微分几何

终于开始谈到重点了,就是这部分内容促使我学习外微分的。用外微分可以方便地推导微分几何的一些内容,有时候还能方便计算。其主要根源在于:外微分本身在形式上是微分的推广,因此微分几何的东西能够使用外微分来描述并不出奇;然后,最重要的原因是,外微分把$dx^{\mu}$看成一组基,因此相当于在几何中引入了两组基,一组是本身的向量基(用张量的语言,就是逆变向量的基),这组基可以做对称的内积,另外一组基就是$dx^{\mu}$,这组基可以做反对称的外积。因此,当外微分引入几何时,微分几何就拥有了微分、积分、对称积、反对称积等各种“理想装备”,这就是外微分能够加速微分几何推导的主要原因。

标架的运动

前面已经得到
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{45} $$

点击阅读全文...

6 Nov

【外微分浅谈】5. 几何意义

对于前面所述的外微分,包括后面还略微涉及到的微分形式的积分,都是纯粹代数定义的内容,本身不具有任何的几何意义。但是,我们可以将某些公式或者定义,与一些几何内容对应起来,使我们更深刻地理解它,并且更灵活运用它。但是,它仅仅是一种对应,而且取决于我们的诠释。比如,我们说外微分公式
$$\int_{\partial D} Pdx+Qdy = \int_{D} \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dx\land dy \tag{32} $$
对应于格林公式
$$\int_{\partial D} Pdx+Qdy = \int_{D} \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy \tag{33} $$
。这是没问题的,但它们并不等价,它们仅仅是形式上刚好一样。因为格林公式是描述闭合曲线的积分跟面积分的联系,而外微分的公式是一种纯粹的代数运算。因为你完全可以将$dx\land dy$对应于$-dxdy$而不是$dxdy$,这样就得到另外一种几何的对应。

更深刻的问题是:为什么恰好有这个对应?也就是说,为什么经过一些调整和诠释后,就能够得到与积分公式的对应?首先要明确的是外积与普通的数的乘积,除了反对称性之外,是没有任何区别的,因此不少性质得以保留;其次,还应该要回到反对称本身来考虑,矩阵的行列式代表着矩阵所对应的向量组张成的$n$维立体的体积,然而行列式是反对称的,这就意味着反对称运算跟体积、积分等有着先天的联系。当然,更细致的认识,笔者也还没做到。

此外,我们说寻求微分形式的几何意义,通常只是针对不超过3维的空间来讨论的,更高维的几何图像我们很难想象出来,尤其是高维的曲面积分,一般只是类比,但类比是否成立,有时还需要进一步商榷。因此,这种情况下,倒不如干脆点,说微分形式描述的东西就是几何,而不再去寻找所谓的几何意义了。也就是说,反过来,将微分形式和外微分作为公理式的第一性原理来定义几何。

甚至,你可以只将外微分当作是一种记忆各种微分、积分公式的有效途径,比如现在我要大家默写三维空间中的斯托克斯公式,大家估计会乱,因为不一定记得是哪个减哪个。但是在外微分框架下,可以很快地将它推导一遍。好比式$(11)$,如果非要寻求几何解释,那就是开普勒第二定律:单位时间内扫过的面积相等;然而没有几何解释,你依旧可以把方程解下去。

点击阅读全文...

5 Nov

【外微分浅谈】4. 微分不微

外微分

向量的外积一般只定义于不超过3维的空间。为了在更高维空间中使用反对称运算,我们需要下面描述的微分形式与外微分。

我们知道,任意$x$的函数的微分都可以写成$dx^{\mu}$的线性组合,在这里,各$dx^{\mu}$实则上扮演了一个基的角色,因此,我们不妨把$dx^{\mu}$看成是一组基,并且把任意函数称为微分0形式,而诸如$\omega_{\mu}dx^{\mu}$的式子,称为微分1形式。

在$dx^{\mu}$这组基之上,我们定义外积$\land$,即有反对称的运算$dx^{\mu}\land dx^{\nu}$,并且把诸如$\omega_{\mu\nu}dx^{\mu}\land dx^{\nu}$的式子,称为微分2形式。注意到这是$n$维空间中的外积,$dx^{\mu}\land dx^{\nu}$事实上是一个新空间的基,而不能用$dx^{\mu}$的线性组合来表示。

点击阅读全文...

5 Nov

【外微分浅谈】3. 正交标架

众所周知,要掌握黎曼几何,需要强烈的几何直观感。但除此之外,用分量语言描述的黎曼几何,也需要很好的分析能力才能梳理清楚,因为有$N$多的指标在表示着分量和求和,咋看上去处处皆指标。这种繁琐的分量语言并不总讨人喜欢,甚至在不少地方是声名狼籍的。

在分量的语言中,我们本质上可以在局部建立任意形式的坐标系,也就是采用任意形式的基底$\{\boldsymbol{e}_{\mu}\}$,或者说自然标架。但不可否认,在正交标架(标准正交基)之下,很多方程会简单不少,并且得益于我们对欧氏空间的熟练,我们对正交标架下的研究可能会更有感觉。因此,如果条件允许的话,我们应当使用正交标架$\{\hat{\boldsymbol{e}}_{\mu}\}$,哪怕是活动的,这里我们用$\hat{}$标记正交标架。

比如,我们有微元
$$d\boldsymbol{r} = \boldsymbol{e}_{\mu}dx^{\mu} \tag{12} $$
是在一般标架下测量的,那么就可以得到黎曼度量

点击阅读全文...

4 Nov

【外微分浅谈】2. 反对称的威力

内积与外积

向量(这里暂时指的是二维或者三维空间中的向量)的强大之处,在于它定义了内积和外积(更多时候称为叉积、向量积等),它们都是两个向量之间的运算,其中,内积被定义为是对称的,而外积则被定义为反对称的,它们都满足分配律。

沿着书本的传统,我们用$\langle,\rangle$表示内积,用$\land$表示外积,对于外积,更多的时候是用$\times$,但为了不至于出现太多的符号,我们统一使用$\land$。我们将向量用基的形式写出来,比如
$$\boldsymbol{A}=\boldsymbol{e}_{\mu}A^{\mu} \tag{1} $$
其中$\boldsymbol{e}_{\mu}$代表着一组基,而$A^{\mu}$则是向量的分量。我们来计算两个向量$\boldsymbol{A},\boldsymbol{B}$的内积和外积,即
$$\begin{aligned}&\langle \boldsymbol{A}, \boldsymbol{B}\rangle=\langle \boldsymbol{e}_{\mu}A^{\mu}, \boldsymbol{e}_{\nu}B^{\nu}\rangle=\langle\boldsymbol{e}_{\mu},\boldsymbol{e}_{\nu}\rangle A^{\mu}A^{\nu}\\
&\boldsymbol{A}\land \boldsymbol{B}=(\boldsymbol{e}_{\mu}A^{\mu})\land (\boldsymbol{e}_{\nu}B^{\nu})=\boldsymbol{e}_{\mu}\land\boldsymbol{e}_{\nu} A^{\mu}B^{\nu}
\end{aligned} \tag{2} $$

点击阅读全文...

4 Nov

【外微分浅谈】1. 绪论与启发

写在前面

在《理解黎曼几何》系列,笔者分享了一些黎曼几何的“几何”心得,同时遗留了一个问题:怎么真正地去算黎曼张量?MTW的《引力论》中提到了一种基于外微分的方法,可是我不熟悉外微分,遂学习了一番。确实,是《引力论》中快捷计算曲率张量的步骤让笔者决定深入了解外微分的。果然,可观的效益是第一推动力。

这系列文章主要分享一些外微分的学习心得,曾经过多次修改和完善,包含的内容很多,比如外积、活动标架、外微分及其在黎曼几何的一些应用等,最后包括一种计算曲率的有效方式

符号说明:在本系列中,用粗体的字母表示向量、矩阵以及基底,用普通字母来表示标量,它有可能是一个标量函数,也有可能是向量的分量,如无说明,则用$n$表示空间(流形)的维度。本文中同样使用了爱因斯坦求和法则,即相同的上下指标表示$1\sim n$遍历求和,即$\alpha_{\mu}\beta^{\mu}=\sum_{\mu=1}^{n} \alpha_{\mu}\beta^{\mu}$,习惯上将下标写在前面,比如$\alpha_{\mu}\beta^{\mu}$事实上跟$\beta^{\mu}\alpha_{\mu}$等价,但习惯写成前者。常用的一些记号是:$\mu,\nu$表示分量指标,$x^{\mu}$表示点的坐标分量,$dx^{\mu}$表示切向量(微元)的分量,$\alpha,\beta,\omega$等希腊字母也常用来表示微分形式。符号的使用有重复的地方,但符号的意义基本都在符号出现的附近有说明,因此应该不至于混淆。

最后,就是笔者其实对外微分还不是特别有感觉,因此文章中可能出现谬误之处,请读者见谅并指出。本系列命名为“外微分浅谈”,不是谦虚,确实是很浅,认识得浅,说的也很浅~

点击阅读全文...

2 Nov

【理解黎曼几何】8. 处处皆几何 (力学几何化)

黎曼几何在广义相对论中的体现和应用,虽然不能说家喻户晓,但想必大部分读者都有所听闻。一谈到黎曼几何在物理学中的应用,估计大家的第一反应就是广义相对论。常见的观点是,广义相对论的发现大大推动了黎曼几何的发展。诚然,这是事实,然而,大多数人不知道的事,哪怕经典的牛顿力学中,也有黎曼几何的身影。

本文要谈及的内容,就是如何将力学几何化,从而使用黎曼几何的概念来描述它们。整个过程事实上是提供了一种框架,它可以将不少其他领域的理论纳入到黎曼几何体系中。

黎曼几何的出发点就是黎曼度量,通过黎曼度量可以通过变分得到测地线。从这个意义上来看,黎曼度量提供了一个变分原理。那反过来,一个变分原理,能不能提供一个黎曼度量呢?众所周知,不少学科的基础原理都可以归结为一个极值原理,而有了极值原理就不难导出变分原理(泛函极值),如物理中就有最小作用量原理、最小势能原理,概率论中有最大熵原理,等等。如果有一个将变分原理导出黎曼度量的方法,那么就可以用几何的方式来描述它。幸运的是,对于二次型的变分原理,是可以做到的。

点击阅读全文...

21 Oct

【理解黎曼几何】7. 高斯-博内公式

令人兴奋的是,我们导出黎曼曲率的途径,还能够让我们一瞥高斯-博内公式( Gauss–Bonnet formula)的风采,真正体验一番研究内蕴几何的味道。

高斯-博内公式是大范围微分几何学的一个经典的公式,它建立了空间的局部性质和整体性质之间的联系。而我们从一条几何的路径出发,结合一些矩阵变换和数学分析的内容,逐步导出了测地线、协变导数、曲率张量,现在可以还可以得到经典的高斯-博内公式,可见我们在这条路上已经走得足够远了。虽然过程不尽善尽美,然而并没有脱离这个系列的核心:几何直观。本文的目的,正是分享黎曼几何的一种直观思路,既然是思路,以思想交流为主,不以严格证明为目的。因此,对于大家来说,这个系列权当黎曼几何的补充材料吧。

形式改写

首先,我们可以将式$(48)$重写为更有几何意义的形式。从

点击阅读全文...