17 Aug

【中文分词系列】 1. 基于AC自动机的快速分词

前言:这个暑假花了不少时间在中文分词和语言模型上面,碰了无数次壁,也得到了零星收获。打算写一个专题,分享一下心得体会。虽说是专题,但仅仅是一些笔记式的集合,并非系统的教程,请读者见谅。

中文分词

关于中文分词的介绍和重要性,我就不多说了,matrix67这里有一篇关于分词和分词算法很清晰的介绍,值得一读。在文本挖掘中,虽然已经有不少文章探索了不分词的处理方法,如本博客的《文本情感分类(三):分词 OR 不分词》,但在一般场合都会将分词作为文本挖掘的第一步,因此,一个有效的分词算法是很重要的。当然,中文分词作为第一步,已经被探索很久了,目前做的很多工作,都是总结性质的,最多是微弱的改进,并不会有很大的变化了。

目前中文分词主要有两种思路:查词典字标注。首先,查词典的方法有:机械的最大匹配法、最少词数法,以及基于有向无环图的最大概率组合,还有基于语言模型的最大概率组合,等等。查词典的方法简单高效(得益于动态规划的思想),尤其是结合了语言模型的最大概率法,能够很好地解决歧义问题,但对于中文分词一大难度——未登录词(中文分词有两大难度:歧义和未登录词),则无法解决;为此,人们也提出了基于字标注的思路,所谓字标注,就是通过几个标记(比如4标注的是:single,单字成词;begin,多字词的开头;middle,三字以上词语的中间部分;end,多字词的结尾),把句子的正确分词法表示出来。这是一个序列(输入句子)到序列(标记序列)的过程,能够较好地解决未登录词的问题,但速度较慢,而且对于已经有了完备词典的场景下,字标注的分词效果可能也不如查词典方法。总之,各有优缺点(似乎是废话~),实际使用可能会结合两者,像结巴分词,用的是有向无环图的最大概率组合,而对于连续的单字,则使用字标注的HMM模型来识别。

点击阅读全文...

13 Aug

两个惊艳的python库:tqdm和retry

Python基本是我目前工作、计算、数据挖掘的唯一编程语言(除了符号计算用Mathematica外)。当然,基本的Python功能并不是很强大,但它胜在有巨量的第三方扩展库。在选用Python的第三方库时,我都会经过仔细考虑,希望能挑选出最简单的、最直观的一个(因为本人比较笨,太复杂用不了)。在数据处理方面,我用得最多的是Numpy和Pandas,这两个绝对称得上王者级别的库,当然不能不提的是Scipy,但我很少直接用它,一般会通过Pandas间接调用了;可视化方面不用说是Matplotlib了;在建模方面,我会用Keras,直接上深度学习模型,Keras已经成为相当流行的深度学习框架了,如果做文本挖掘,通常还会用到jieba(分词)、Gensim(主题建模,包含了诸如word2vec之类的模型),机器学习库还有流行的Scikit Learn,但我很少用;网络方面,写爬虫我用requests,这是个人性化的网络库,如果写网站,我会用bottle,这是个单文件版的迷你框架,一切由自己定义,当然,我也不会去写什么大型网站,我就写一个简单的的接口那样而已;最后如果要并行的话,一般直接用multiprocessing。

不过,以上都不是本文要推荐的,本文要推荐的是两个可以渗透到日常写代码的库,它实现了我们平时很多时候都需要的功能,但是不用增加什么代码,绝对让人眼前一亮。

点击阅读全文...

1 Jul

从Boosting学习到神经网络:看山是山?

前段时间在潮州给韩师的同学讲文本挖掘之余,涉猎到了Boosting学习算法,并且做了一番头脑风暴,最后把Boosting学习算法的一些本质特征思考清楚了,而且得到一些意外的结果,比如说AdaBoost算法的一些理论证明也可以用来解释神经网络模型这么强大。

AdaBoost算法

Boosting学习,属于组合模型的范畴,当然,与其说它是一个算法,倒不如说是一种解决问题的思路。以有监督的分类问题为例,它说的是可以把弱的分类器(只要准确率严格大于随机分类器)通过某种方式组合起来,就可以得到一个很优秀的分类器(理论上准确率可以100%)。AdaBoost算法是Boosting算法的一个例子,由Schapire在1996年提出,它构造了一种Boosting学习的明确的方案,并且从理论上给出了关于错误率的证明。

以二分类问题为例子,假设我们有一批样本$\{x_i,y_i\},i=1,2,\dots,n$,其中$x_i$是样本数据,有可能是多维度的输入,$y_i\in\{1,-1\}$为样本标签,这里用1和-1来描述样本标签而不是之前惯用的1和0,只是为了后面证明上的方便,没有什么特殊的含义。接着假设我们已经有了一个弱分类器$G(x)$,比如逻辑回归、SVM、决策树等,对分类器的唯一要求是它的准确率要严格大于随机(在二分类问题中就是要严格大于0.5),所谓严格大于,就是存在一个大于0的常数$\epsilon$,每次的准确率都不低于$\frac{1}{2}+\epsilon$

点击阅读全文...

29 Jun

文本情感分类(三):分词 OR 不分词

去年泰迪杯竞赛过后,笔者写了一篇简要介绍深度学习在情感分析中的应用的博文《文本情感分类(二):深度学习模型》。虽然文章很粗糙,但还是得到了不少读者的反响,让我颇为意外。然而,那篇文章中在实现上有些不清楚的地方,这是因为:1、在那篇文章以后,keras已经做了比较大的改动,原来的代码不通用了;2、里边的代码可能经过我随手改动过,所以发出来的时候不是最适当的版本。因此,在近一年之后,我再重拾这个话题,并且完成一些之前没有完成的测试。

为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型。所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特征的提取、模型的学习。而回顾我们做中文情感分类的过程,一般都是“分词——词向量——句向量(LSTM)——分类”这么几个步骤。虽然很多时候这种模型已经达到了state of art的效果,但是有些疑问还是需要进一步测试解决的。对于中文来说,字才是最低粒度的文字单位,因此从“端到端”的角度来看,应该将直接将句子以字的方式进行输入,而不是先将句子分好词。那到底有没有分词的必要性呢?本文测试比较了字one hot、字向量、词向量三者之间的效果。

模型测试

本文测试了三个模型,或者说,是三套框架,具体代码在文末给出。这三套框架分别是:

1、one hot:以字为单位,不分词,将每个句子截断为200字(不够则补空字符串),然后将句子以“字-one hot”的矩阵形式输入到LSTM模型中进行学习分类;

2、one embedding:以字为单位,不分词,,将每个句子截断为200字(不够则补空字符串),然后将句子以“字-字向量(embedding)“的矩阵形式输入到LSTM模型中进行学习分类;

3、word embedding:以词为单位,分词,,将每个句子截断为100词(不够则补空字符串),然后将句子以“词-词向量(embedding)”的矩阵形式输入到LSTM模型中进行学习分类。

点击阅读全文...

26 Jun

OCR技术浅探:9. 代码共享(完)

文件说明:

1. image.py——图像处理函数,主要是特征提取;

2. model_training.py——训练CNN单字识别模型(需要较高性能的服务器,最好有GPU加速,否则真是慢得要死);

3. ocr.py——识别函数,包括单字分割、前面训练好的模型进行单字识别、动态规划提升效果;

4. main.py——主文件,用来调用1、3两个文件。

5、我们的模型中包含的字.txt(UTF-8编码)

点击阅读全文...

26 Jun

OCR技术浅探:8. 综合评估

数据验证

尽管在测试环境下模型工作良好,但是实践是检验真理的唯一标准. 在本节中,我们通过自己的模型,与京东的测试数据进行比较验证.

衡量OCR系统的好坏有两部分内容:(1)是否成功地圈出了文字;(2)对于圈出来的文字,有没有成功识别. 我们采用评分的方法,对每一张图片的识别效果进行评分. 评分规则如下:

如果圈出的文字区域能够跟京东提供的检测样本的box文件中匹配,那么加1分,如果正确识别出文字来,另外加1分,最后每张图片的分数是前面总分除以文字总数.

按照这个规则,每张图片的评分最多是2分,最少是0分. 如果评分超过1,说明识别效果比较好了. 经过京东的测试数据比较,我们的模型平均评分大约是0.84,效果差强人意。

点击阅读全文...

26 Jun

OCR技术浅探:7. 语言模型

由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方法之一.

转移概率

在我们分析实验结果的过程中,有出现这一案例.由于图像不清晰等可能的原因,导致“电视”一词被识别为“电柳”,仅用图像模型是不能很好地解决这个问题的,因为从图像模型来看,识别为“电柳”是最优的选择.但是语言模型却可以很巧妙地解决这个问题.原因很简单,基于大量的文本数据我们可以统计“电视”一词和“电柳”一词的概率,可以发现“电视”一词的概率远远大于“电柳”,因此我们会认为这个词是“电视”而不是“电柳”.

从概率的角度来看,就是对于第一个字的区域的识别结果$s_1$,我们前面的卷积神经网络给出了“电”、“宙”两个候选字(仅仅选了前两个,后面的概率太小),每个候选字的概率$W(s_1)$分别为0.99996、0.00004;第二个字的区域的识别结果$s_2$,我们前面的卷积神经网络给出了“柳”、“视”、“规”(仅仅选了前三个,后面的概率太小),每个候选字的概率$W(s_2)$分别为0.87838、0.12148、0.00012,因此,它们事实上有六种组合:“电柳”、“电视”、“电规”、“宙柳”、“宙视”、“宙规”.

点击阅读全文...

25 Jun

OCR技术浅探:6. 光学识别

经过第一、二步,我们已经能够找出图像中单个文字的区域,接下来可以建立相应的模型对单字进行识别.

模型选择

在模型方面,我们选择了深度学习中的卷积神经网络模型,通过多层卷积神经网络,构建了单字的识别模型.

卷积神经网络是人工神经网络的一种,已成为当前图像识别领域的主流模型. 它通过局部感知野权值共享方法,降低了网络模型的复杂度,减少了权值的数量,在网络结构上更类似于生物神经网络,这也预示着它必然具有更优秀的效果. 事实上,我们选择卷积神经网络的主要原因有:

1. 对原始图像自动提取特征 卷积神经网络模型可以直接将原始图像进行输入,免除了传统模型的人工提取特征这一比较困难的核心部分;

2. 比传统模型更高的精度 比如在MNIST手写数字识别任务中,可以达到99%以上的精度,这远高于传统模型的精度;

3. 比传统模型更好的泛化能力 这意味着图像本身的形变(伸缩、旋转)以及图像上的噪音对识别的结果影响不明显,这正是一个良好的OCR系统所必需的.

点击阅读全文...