用二次方程判别式判断正定矩阵
By 苏剑林 | 2013-12-24 | 56018位读者 | 引用快要学期末了,不少学霸开始忙碌起来了。不过对非学霸的我来说,基本上每天都是一样的,希望把自己感兴趣的东西深入研究下去,因为我觉得,真正学会点有用的东西才是最重要的。数学分析和高等代数老师都要求写课程论文,我也写了我比较感兴趣的“欧拉数学”和“超复数研究”,之后会把这部分内容与大家分享。
虽然学期已经接近尾声了,但是我们的课程还没有上完。事实上,我们的新课一直上到十八周~随着考试的接近,我们的《高等代数》课程也已经要落幕了。最近在上的是二次型方面的内容,讲到正定二次型和正定矩阵。关于正定矩阵的判别,教科书上提供了两个判别方法,一个是基于定义的初等变换,另外一个就是主子式法。前者无可厚非,但是后者我似乎难以理解——它虽然是正确的,但是它很丑,计算量又大。我还没有想清楚主子式法到底有什么好的?在我看来,本文所探讨的基于二次方程判别式的方法才是简单、快捷的。
正定二次型
所谓正定二次型,就是关于n个变量$x_1,x_2,...,x_n$的二次齐次函数,只要$x_i$不全为0,它的值恒为正数。比如
$$2 x_1^2+x_2^2-2 x_1 x_2=x_1^2+(x_2-x_1)^2$$
这是一个比较简单的正定二次型,多元的还有
$$5 x_1^2+x_2^2+5 x_3^2+4 x_1 x_2-8 x_1 x_3-4 x_2 x_3$$
纠缠的时空(三):长度收缩和时间延缓
By 苏剑林 | 2013-04-18 | 29391位读者 | 引用我们之前通过矩阵变换方式推导出了洛伦兹变换以及速度合成公式等结论,不得不说,矩阵推导方式有种引人入胜的魅力。今天,在讲述相对论(包括电动力学、广义相对论)的书籍里边,在数学形式上取而代之了张量这一工具,这实际上是对矩阵的一个推广(之前已经提到过,二阶张量相当于矩阵)。采用这样的形式在于它充分体现了相对论的对称和变换关系。本文将来谈及狭义相对论的一些基本结论,包括同时性、长度收缩、时间延缓等。
本文的光速$c=1$。
同时的相对性
在同一时空中,采取两个时空坐标进行洛伦兹变换,再作差,我们得到:
\begin{equation}\left[\begin{array}{c} \Delta x\\ \Delta t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}\Delta x'\\ \Delta t' \end{array}\right]\end{equation}
纠缠的时空(二):洛仑兹变换的矩阵(续)
By 苏剑林 | 2013-02-27 | 19564位读者 | 引用在上一篇文章中,我们以矩阵的方式推导出了洛仑兹变换。矩阵表述不仅仅具有形式上的美,还具有很重要的实用价值,比如可以很方便地寻找各种不变量。当洛仑兹变换用矩阵的方式表达出来后,很多线性代数中已知的理论都可以用在上边。在这篇小小的续集中,我们将尝试阐述这个思想。
本文中,继续设光速$c=1$。
我们已经得到了洛仑兹变换的矩阵形式:
\begin{equation}\left[\begin{array}{c} x\\t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}x'\\t' \end{array}\right]\end{equation}
纠缠的时空(一):洛仑兹变换的矩阵
By 苏剑林 | 2013-02-01 | 37395位读者 | 引用我现在是越来越佩服爱因斯坦了,他的相对论是他天才的思想的充分体现。只有当相对论提出之后,宏观物理的大多数现象和规律才得到了统一的描述。狭义相对论中爱因斯坦对我们速度叠加常识的否定已经显示了他莫大的勇气,而一项头脑风暴性的工作——广义相对论则将他惊人的创造力体现得完美无瑕。我是被量子力学的数学吸引的,于相对论则是被相对论美妙的逻辑体系吸引。当然,其中也有相当美妙的数学。
狭义相对论中的核心内容之一就是被称为洛仑兹变换的东西,这在相对论发表之前已经由洛仑兹推导出来了,只不过他不承认他的物理意义,也就没有就此进行一次物理革命,革命的任务则由爱因斯坦完成。很久前我就已经看过洛仑兹变换的推导,那是直接设一种线性关系来求解的。但是我总感觉那样的推导不够清晰(也许是我的理解方式有问题吧),而且没有说明狭义相对论的两条原理如何体现出现。所以在研究过矩阵之后,我就尝试用矩阵来推导洛仑兹变换,发现效果挺好的,而且我觉得能够体现出相对论中的对称性。
两条原理
1、狭义相对性原理:在所有惯性系中,物理定律有相同的表达形式。这是力学相对性原理的推广,它适用于一切物理定律,其本质是所有惯性系平权。
2、光速不变原理:所有惯性系中,真空中的光速都等于c=299 792 458 m/s,与光源运动无关。迈克耳孙-莫雷实验是其有力证明。
矩阵化简二次型(无穷小近似处理抛物型)
By 苏剑林 | 2012-12-25 | 24264位读者 | 引用(阅读本文最好有一定的线性代数基础,至少对线性代数里边的基本概念有所了解。)
这学期已经接近尾声了,我们的《解析几何》已经讲到化简二次曲线了。可是,对于没有线性代数的其他同学们,直接用转轴和移轴这个计算公式来变换,那计算量会让我们很崩溃的;虽然那个“不变量”方法计算上有些简单,却总让人感到很诡异,总觉得不知从何而来,而且又要记一堆公式。事实上,如果有线性代数的基础,这些东西变得相当好理解的。我追求用统一的方法求解同一种问题,即用统一的方式处理所有的二次型,当然也希望计算量简单一点。
一般的模型
一般的二次型可以写成
$$x^T A x + 2 b^T x + c=0$$
其中$x,b$都是n维列向量(各元素为$x_i$和$b_i$),A是n阶方阵(各元素为$a_{ij}$),c是常数。在这里,我们只讨论n=2和n=3的情况。化简二次型的过程,可以归结为A矩阵的简化。
《新理解矩阵4》:相似矩阵的那些事儿
By 苏剑林 | 2012-11-11 | 52565位读者 | 引用这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
《新理解矩阵3》:行列式的点滴
By 苏剑林 | 2012-11-04 | 40120位读者 | 引用本文的最新版本位于:http://kexue.fm/archives/2208/
亲爱的读者朋友们,科学空间版的理解矩阵已经来到了BoJone认为是最激动人心的部分了,那就是关于行列式的叙述。这部分内容没有在孟岩的文章中被谈及到,是我自己结合了一些书籍和网络资源而得出的一些看法。其中最主要的书籍是《数学桥》,而追本溯源,促进我研究这方面的内容的是matrix67的那篇《教材应该怎么写》。本文包含了相当多的直观理解内容,在我看来,这部分内容也许不是正统的观点,但是至少在某种程度上能够促进我们对线性代数的理解。
大多数线性代数引入行列式的方式都是通过讲解线性方程组的,这种方式能够让学生很快地掌握它的计算,以及给出了一个最实际的应用(就是解方程组啦)。但是这很容易让读者走进一个误区,让他们认为线性代数就是研究解方程组的。这样并不能让读者真正理解到它的本质,而只有当我们对它有了一个直观熟练的感觉,我们才能很好地运用它。
行列式的出现其实是为了判断一个矩阵是否可逆的,它通过某些方式构造出一个“相对简单”的函数来达到这个目的,这个函数就是矩阵的行列式。让我们来反思一下,矩阵可逆意味着什么呢?之前已经提到过,矩阵是从一个点到另外一个点的变换,那么逆矩阵很显然就是为了把它变换回来。我们还说过,“运动是相对的”,点的变换又可以用坐标系的变换来实现。但是,按照我们的直觉,不同的坐标系除了有那些运算上的复杂度不同(比如一般的仿射坐标系计算点积比直角坐标系复杂)之外,不应该有其他的不同了,用物理的语言说,就是一切坐标系都是平权的。那么给出一个坐标系,可以自然地变换到另外一个坐标系,也可以自然地将它变换回来。既然矩阵是这种坐标系的一个描述,那么矩阵不可逆的唯一可能性就是:
这个$n$阶矩阵的$n$个列向量根本就构不成一个$n$维空间的坐标系。
《新理解矩阵2》:矩阵是什么?
By 苏剑林 | 2012-10-31 | 36207位读者 | 引用上一篇文章中我从纯代数运算的角度来讲述了我对矩阵的一个理解,可以看到,我们赋予了矩阵相应的运算法则,它就在代数、分析等领域显示出了巨大作用。但是纯粹的代数是不足够的,要想更加完美,最好是找到相应的几何对象能够与之对应,只有这样,我们才能够直观地理解它,以达到得心应手的效果。
几何理解
我假设读者已经看过孟岩的《理解矩阵》三篇文章,所以更多的细节我就不重复了。我们知道,矩阵A
$$\begin{pmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{pmatrix}$$
事实上由两个向量$[a_{11},a_{21}]^T$和$[a_{12},a_{22}]^T$(这里的向量都是列向量)组成,它描述了一个平面(仿射)坐标系。换句话说,这两个向量其实是这个坐标系的两个基,而运算$y=Ax$则是告诉我们,在$A$这个坐标系下的x向量,在$I$坐标系下是怎样的。这里的$I$坐标系就是我们最常用的直角坐标系,也就是说,任何向量(包括矩阵里边的向量),只要它前面没有矩阵作用于它,那么它都是在直角坐标系下度量出来的。
最近评论