30 Apr

一道概率不等式:盯着它到显然成立为止!

前两天,QQ群里有群友抛出了一道不等式求证:

一道概率相关的不等式,出自《There is no fast single hashing algorithm》

一道概率相关的不等式,出自《There is no fast single hashing algorithm》

简短的题目,加上“easily”的提示,让人觉得这似乎是显然成立的结果,然而提问者却表示尝试了很久仍未果。那么实际情况如何呢?是否真的是显然成立呢?

初步尝试

题目等价于证
\begin{equation}\sum_{i=0}^j p^i \leq \sum_{i=0}^j \left(\log\frac{1}{1-p}\right)^i/i!,\qquad p\in[0, 1)\label{eq:q}\end{equation}

点击阅读全文...

19 Apr

柯西命题:盯着它到显然成立为止!

数学分析中数列极限部分,有一个很基本的“柯西命题”:

如果$\lim_{n\to\infty} x_n=a$,则
$$\lim_{n\to\infty}\frac{x_1+x_2+\dots+x_n}{n}=a$$

本文所要谈的便是这个命题,当然还包括类似的一些题目。

柯西命题的证明

柯西命题的证明并不难,只需要根据极限收敛的定义,由于$\lim_{n\to\infty} x_n=a$,所以任意给定$\varepsilon > 0$,存在足够大的$N$,使得对于任意的$n > N$,都有
$$\left|x_n - a\right| < \varepsilon/2\quad(\forall n > N)$$

点击阅读全文...