初试在Python中使用PARI/GP
By 苏剑林 | 2014-07-22 | 30531位读者 | 引用强大的整数数列网站OEIS
By 苏剑林 | 2014-07-17 | 38123位读者 | 引用OEIS?:http://oeis.org/
近段时间在研究解析数论,进一步感觉数论真是个奇妙的东西,通过它,似乎数学的各个方面——离散的和连续的,实数的和复数的,甚至物理的——都联系了起来。由此也不难体会到当初高斯(Gauss)会说“数学是科学的皇后,数论是数学的皇后。”了。今天,由于在研究素数的个数的上下界问题时,需要思考组合数
$$C_{n}^{2n}=\binom{2n}{n}=\frac{(2n)!}{n!\ n!}$$
最多能被2的多少次方整除。直觉告诉我,次数应该是随着$n$的增大而增大的,但事实却不是,比如$C_{15}^{30}$能够被16整除,但是$C_{20}^{40}$却最多只能被4整除,有种毫无规律的感觉,于是到群里问问各大神。其中,wayne提出
这个可以写个小程序算出一些数据,再在oeis上搜搜
勾股数的通解及其推广
By 苏剑林 | 2014-07-01 | 21380位读者 | 引用在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。
勾股数问题
读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$
Project Euler 454 :五天攻下“擂台”
By 苏剑林 | 2014-06-27 | 28590位读者 | 引用进入期末了,很多同学都开始复习了,这学期我选的几门课到现在还不是很熟悉,本想也在趁着这段时间好好看看。偏生五天前我在浏览数学研发论坛的编程擂台时看到了这样的一道题目:
设对于给定的$L$,方程
$$\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$$
满足$0 < x < y \leq L$的正整数解共有$f(L)$种情况。比如$f(6)=1,f(12)=3,f(1000)=1069$,求$f(10^{12})$。
这道题目的来源是Project Euler的第454题:Diophantine reciprocals III(丢潘图倒数方程),题目简短易懂,但又不失深度,正符合我对理想题目的定义。而且最近在学习Python学习得不亦乐乎,看到这道题目就跃跃欲试。于是乎,我的五天时间就没有了,而且过程中几乎耗尽了我现在懂的所有编程技巧。由于不断地测试运行,我的电脑发热量比平时大了几倍,真是辛苦了我的电脑。最后的代码,自我感觉已经是我目前写的最精彩的代码了。在此与大家共享和共勉~
上述表达式是分式,不利于编程,由于$n=\frac{xy}{x+y}$,于是上述题目也等价于求$(x+y)|xy$(意思是$x+y$整除$xy$)的整数解。
两百万前素数之和与前两百万素数之和
By 苏剑林 | 2014-06-10 | 69407位读者 | 引用[问题解答]有多少位数字?
By 苏剑林 | 2013-02-21 | 16002位读者 | 引用解决完上一题《有多少个5?》后,子瑞表示看到一道类似的题目,当然,这道题比上一道难一些:
一个数,各个数字加起来等于900,乘以2后各个数字加起来还是等于900,已知这个数字只有3、4、5、6组成,请问满足条件的最大数与最小数的积有多少位数?
要解答这个问题,我们只需要知道最大数和最小数分别有多少位即可。因为最大数必然是6...3的形式,而最小数只能是3...6的形式,它们的位数之和就是所求的位数。
怎样比较两个数的大小呢?显然,在不同位数的数时,位数多的数要大,同样位数才从高到低逐位比较。因此,我们应当考虑位数的最大与最小。
也许中学老师会告诉5、10、20等等的十进制数字怎么化成二进制数字,但又没有老师告诉你怎么将十进制的0.1变成二进制的小数呢?
我们将一个十进制整数化为二进制是这样操作的:在十进制的计算法则中,将十进制数除以2,得到商和余数;把商除以2,得到商和余数;...重复下去,直到商为0。然后把每次得到的余数按倒序排列,就得到了二进制数字。比如6:
$$\begin{aligned}6\div 2=3...0 \\ 3\div 2=1...1 \\ 1\div 2=0...1\end{aligned}$$
倒过来就是110。这就是二进制中的6了。
高斯说过“数学是科学的皇后,而算术则是数学的女王。”这里的“算术”,其实就是我们现在所说的数论。从很小的时候开始,我便对数论情有独钟。虽然后来接触了很多更为有趣的数学分支,但是对数学的热情依然不减。我想,这大概是因为小时候的情结吧。小学时候,小小年纪的我,刚刚学完素数、合数、约数、整除等等概念,对数字尤其有兴趣。我想,在那时候我唯一能够读懂的数学难题只有数论这一领域吧。比如费马大定理,$x^n+y^n=z^n$,对于n大于2没有正整数解,很容易就知道它在讲什么;再比如,哥德巴赫猜想,每个大于4的偶数都可以分拆成两个奇素数之和,也很简单就弄懂它讲的是什么。所以,小小的我看懂了这些问题后就饶有兴致地摆弄数字啦,也许正因为如此,才让我对数字乃至对数学都有深厚的爱。
哥德巴赫猜想,无疑是数论中的一个璀璨明珠,可是目前来讲,它还是可望不可即的。一个看似如此简单的猜想,却困惑了数学家几百年,至今无人能解。尽管如此,我还是愿意细细地研究它,慢慢地品味它,在“论证”、或者说验算它的时候,欣赏到数学那神秘的美妙。本文主要就是研究给定偶数的“哥德巴赫分拆数”,即通过实际验算得出每个偶数分拆为两个素数之和的不同分拆方式的数目,比如6=3+3,只有一种分拆方式;8=3+5=5+3;有两种分拆方式;10=3+7=5+5=7+3,有三种分拆方式;等等。偶数2n的分拆数记为$G_2 (2n)$。
(这里定义的“分拆数”跟网上以及一般文献中的定义不同,这里把3+5和5+3看成是两种分拆方式,而网上一般的定义是只看成一种。我这里的定义的好处在于分拆方式的数目实际表示了分拆中涉及到的所有素数的个数。)
哥德巴赫猜想很难,这话没错,但是事实上哥德巴赫猜想是一个非常弱的命题。它说“每个大于4的偶数至少可以分拆成两个奇素数之和”,用上面的术语来说,就是每个偶数的“哥德巴赫分拆数”大于或等于1。可是经过实际验算发现,偶数越大,它的哥德巴赫分拆数越大,两者整体上是呈正相关关系的,比如$G_2 (100)=12,G_2 (1000)=56,G_2 (10000)=254$......所以,从强弱程度上来讲,这和“少于n的素数至少有一个”是差不多的(当然,难度有天壤之别)。
最近评论