14 Nov

力学系统及其对偶性(二)

如果仅仅从牛顿第二定律的角度来进行变换推导,那么关于力学定律的对偶性的结果无疑仅仅是初等的。对于理论分析来说,更方便的是从做小作用量原理的形式出发,事实上,这种形式计算量也是很少的,甚至比直接代入运动方程变换更加便捷。

上一篇文章中我们讲到,变换$z \mapsto z^2$将一个原点为几何中心的椭圆映射为一个原点为焦点的椭圆,并且相信这种变换可以将胡克定律跟牛顿万有引力定律联系起来。然后就立即给出了变换$w=z^2,d\tau=|z^2|dt$。但是这个变换本身并不显然的,假如我们仅仅发现了$z \mapsto z^2$的几何意义,如何相应地得出$d\tau=|z^2|dt$这个变换呢?本文初步地解决这个问题。

几何作用量

让我们回顾力学的最小作用量原理:
$$ S = \int_{{t_1}}^{{t_2}} L dt = \int_{{t_1}}^{{t_2}} {(T - U)} dt $$

点击阅读全文...

8 Nov

力学系统及其对偶性(一)

写在前头

经过两年多的开发,本站所用的Typecho终于发布了新版,虽然还是beta,但是我还是迫不及待地升级了。当然,前台并没有变化,但是几乎整个程序都是重构了的,后台也更加清爽了。本文是新版程度的第一篇文章,使用Markdowm语法编写。

----------

牛顿Vs胡克

在所有的力学系统中,最简单的或许就是简谐运动了。它由一个最简单的常系数线性微分方程组描述:
$$\ddot{\boldsymbol{x}}+\omega^2 \boldsymbol{x}=0$$

这也就是物体在弹性形变的胡克定律所描述的力的作用下的运动情况。我们可以很快用三角函数写出该方程的精确解。相比之下,二体问题的解就复杂多了,虽然二体问题也是精确可解的,但是显然没有简谐运动那样简单明了。然而,除了都是有心力之外,它们之间还有一个共同点,它们的运动轨道都是椭圆!(严格来说是圆锥曲线,因为还可能有抛物线跟双曲线,但是不失一般性,本文只分析椭圆轨道)两者之间是否存在着某种联系呢?如果可以将二体问题转变为简谐运动,那么分析过程应该可以大大化简了?

点击阅读全文...

2 Jan

用复数化简二次曲线的尝试

当二次型在二维平面的情况下时,就等价于二次曲线的化简。二次曲线的化简主要用到平移和旋转,这恰好是复数所“擅长”的。因此,以复数为工具来对二次曲线进行化简,似乎是一种很显然的思路。然而,我却没有看到这方面的内容,而且我自己之前也忽略了这一思路。下面我对这个思路进行一点探索。

由于只打算做一些启发性引导,所以在这里只考虑$ Ax^2+2Bxy+Cy^2=1$这种不完全的形式(它不包含抛物线)。

点击阅读全文...

2 Aug

复分析学习1:揭示微分与积分的联系

笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。

我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$

点击阅读全文...

19 Jun

向量结合复数:常曲率曲线(1)

在之前的一篇向量系列的文章中,我们通过结合物理与向量来巧妙地推导出了曲线(包括平面和空间的)的曲率半径为
$$R=\frac{v^2}{a_c}=\frac{|\dot{\vec{r}}|^3}{|\dot{\vec{r}}\times \ddot{\vec{r}}|}\tag{1}$$
曲率则是曲率半径的导数:$\rho=\frac{1}{R}$。我们反过来思考一下:曲率恒定的平面曲线是否只有圆?

答案貌似是很显然的,我们需要证明一下。

由于只是考虑平面情况,我们先设$\dot{\vec{r}}=(v cos\theta,v sin\theta)=z=ve^{i\theta}$,代入(1)得到
$\frac{\dot{\theta}}{v}=\rho$————(2)

点击阅读全文...

10 Apr

备忘:椭圆坐标与复三角函数

椭圆坐标系是一种二维正交坐标系。与直角坐标的转换关系为
$$\begin{aligned}x = a \cos h \mu \cos \nu \\ y = a \sin h \mu \sin \nu\end{aligned}$$

其中$(-a,0)$和$(a,0)$是两个焦点。

参看:http://zh.wikipedia.org/wiki/椭圆坐标系

Elliptical_coordinates_grid.svg

Elliptical_coordinates_grid.svg

点击阅读全文...

4 Feb

[春礼]《方程与宇宙》:圆形限制性三体问题(七)

平面圆形限制性三体问题运动方程及能量积分
plane circular restricted three-body problem
02.04有重要修正!!

寒假一个很大的目标就是能够在三体问题的周期轨道上有点突破,于是就出动了“向量”、“复分析”、“微分方程”等理论“核武”,遗憾的是,“有心栽花花不开”,到今天还是没有多少进展。不过俗语也说“无心插柳柳成荫”,也不错。今天回看《天体力学引论》中的“圆形限制性三体问题”,经过一番思考,利用这些天的思考方法重新推导出了其运动方程和能量积分,也算是“意外收获”在此作为春节礼物与大家分享。

平面圆形限制性三体问题

平面圆形限制性三体问题

所谓“圆形限制性三体问题”,就是指两个大质量天体(质点)在它们相互引力作用下做圆周运动,假设第三天体(质量趋于0)只受到这两个天体的引力作用而不影响两个天体运行的一种运动情况。由于普通三体问题无法积分,而这个“限制性模型”能够把问题化简不少(不过还是不能积分出来的),因此也得到了一定应用。它的应用条件是:第三体质量小(如当前航天器与地球、太阳)、短程。注意短程也是相当重要的条件之一,注意短程也是相当重要的条件之一,质量越小应用范围越大。要是质量大的话,就不能计算太长的路程。

点击阅读全文...

4 Feb

[更新]将向量乘法“退化”到复数

向量有两个乘法:点乘和叉乘,其结果又分别叫做数量积和向量积。在很多情况下,用这两个定义的乘法运算都能够给我们带来很大的方便(其实它就是在实际问题中抽象出来的)。不过,也有相当一部分的二维问题用复数来描述更为简洁。于是,为了整合两者的巧妙之处,有必要把向量的两个乘法运算“退化”到复数中去(为什么用“退化”?因为向量是多维的,可以是3维、4维等,而复数运算只是二维的,很明显这是一种“退化”而不是“拓展”^_^)

运算法则:

点乘:
总法则:$Z_1 \cdot Z_2=|Z_1||Z_2|\cos(arg\frac{Z_2}{Z_1})$
$$\begin{aligned}1\cdot i=0 \\ i\cdot i=1 \\ \exp(i\theta)\cdot \exp(i\varphi)=\cos(\varphi -\theta) \\ iexp(i\theta)\cdot \exp(i\varphi)=-\sin(\theta-\varphi ) \\ Z_1 \cdot Z_2=Z_1 \bar{Z}_2+Z_2 \bar{Z}_1\end{aligned}$$

点击阅读全文...