8 Jul

一道比较函数大小的题目

前几天刚结束的云浮高二期末考数学试卷中,有一道题目让我比较深刻。因为在当时我无法去证明它,只是用了举例子的方法得出了答案。刚才思考了一下,在此给出证明过程。题目如下:

定义在(0,+∞)的函数f(x)满足$x f'(x) \leq f(x)$,对于任意的0 < a < b,比较$a f(b)$和$b f(a)$的大小。

点击阅读全文...

26 Jun

cos 1°的根式表达式

BoJone记得自己第一次接触三角函数大概是小学五、六年级的时候,那时候我拿来了表姐的初中数学书来看。看到三角函数一章后,饶有兴致,希望能够找到一个根据角度来求三角函数值的方法,可是书本上只是教我去用计算器算和查表,这让我这个爱好计算的孩子大失所望。这个问题直到高一才得以解决,原来这已经涉及到了微积分中的泰勒级数了...

我记得为了求任意角度的三角函数值,我曾经根据30°、45°和60°的正弦值拟合过一条近似公式出来:
$$\sin A \approx \sqrt{\frac{A}{60}-1/4}$$

其中A以角度为单位,大致适用于25°~60°,精度好像有两位小数。当然,这个结果在今天看来是很粗糙的,但是这毕竟是我的“小学的作品”!在此留念一翻。

点击阅读全文...

4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...

6 Mar

(原创)切抛物线法解方程

牛顿法使用的是函数切线的方程的零点来逼近原函数的零点,他所使用的是“切直线”,要是改为同曲率的“切抛物线”,则有更稳定的收敛效果以及更快的收敛速度

设函数$y=f(x)$在$(x_0,y_0)$处有一条“切抛物线”$y=ax^2+bx+c$,则应该有

$a(x_0+\Delta x)^2+b(x_0+\Delta x)+c=f(x_0+\Delta x)$-------(A)
$ax_0^2+bx_0+c=f(x_0)$-------(B)
$a(x_0-\Delta x)^2+b(x_0-\Delta x)+c=f(x_0-\Delta x)$-------(C)

其中$lim_{\Delta x->0}$

点击阅读全文...

9 Feb

函数图像旋转公式(“想当然”的教训)

阅读小提示:亲爱的读者,你可以选择不读这篇文章,但如果你选择了阅读,请一定要阅读完。BoJone对“半途而废”所造成的后果一概不负责任^_^。

函数图像旋转

函数图像旋转

我们来考虑下一个旋转问题:将某一函数图像y=f(x),绕点(p,q)逆时针旋转了θ角之后,得到的图象的解析式。

点击阅读全文...