29 Mar

【备忘】电脑远程控制手机的解决方案

最近由于数据挖掘上的研究,需要想办法通过电脑远程控制手机(主要是安卓),遂查找了网络上的一些工具,这里记录一下结果,纯粹做备忘。有同样需要的读者可以参考。

之前在阿里云的服务器和树莓派上都做过远程控制的,记得Linux下的远程控制工具叫做VNC,于是我google和百度了vnc server android、vnc server apk等,发现这类工具确实不少,比如最知名的当属droid vnc server。但是同类的几个软件我都测试了,它确实是VNC软件,但是在我的几个安卓4.x上,显示都不正常(花屏),无奈抛弃了。再看一下日期,发现原来这些软件基本到2013年就停止更新了,一般支持到安卓2.3而已,怪不得。

点击阅读全文...

15 Apr

斯特灵(stirling)公式与渐近级数

斯特灵近似,或者称斯特灵公式,最开始是作为阶乘的近似提出
$$n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$
符号$\sim$意味着
$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{n!}=1$$
将斯特灵公式进一步提高精度,就得到所谓的斯特灵级数
$$n!=\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(1+\frac{1}{12n}+\frac{1}{288n^2}\dots\right)$$
很遗憾,这个是渐近级数。

相关资料有:
https://zh.wikipedia.org/zh-cn/斯特灵公式

https://en.wikipedia.org/wiki/Stirling%27s_approximation

本文将会谈到斯特灵公式及其渐近级数的一个改进的推导,并解释渐近级数为什么渐近。

点击阅读全文...

2 Jun

路径积分系列:3.路径积分

路径积分是量子力学的一种描述方法,源于物理学家费曼[5],它是一种泛函积分,它已经成为现代量子理论的主流形式. 近年来,研究人员对它的兴趣愈发增加,尤其是它在量子领域以外的应用,出现了一些著作,如[7]. 但在国内了解路径积分的人并不多,很多量子物理专业的学生可能并没有听说过路径积分.

从数学角度来看,路径积分是求偏微分方程的Green函数的一种方法. 我们知道,在偏微分方程的研究中,如果能够求出对应的Green函数,那么对偏微分方程的研究会大有帮助,而通常情况下Green函数并不容易求解. 但构建路径积分只需要无穷小时刻的Green函数,因此形式和概念上都相当简单.

本章并没有新的内容,只是做了一个尝试:从随机游走问题出发,给出路径积分的一个简明而直接的介绍,展示了如何将抛物型的偏微分方程问题转化为路径积分形式.

从点的概率到路径的概率

在上一章对随机游走的研究中,我们得出从$x_0$出发,$t$时间后,走到$x_n$处的概率密度为
$$\frac{1}{\sqrt{2\pi \alpha T}}\exp\left(-\frac{(x_n-x_0)^2}{2\alpha t}\right).\tag{22}$$
这是某时刻某点到另一个时刻另一点的概率,在数学上,我们称之为扩散方程$(21)$的传播子,或者Green函数.

点击阅读全文...

18 Jun

OCR技术浅探:3. 特征提取(2)

逐层识别

当图像有效地进行分层后,我们就可以根据前面的假设,进一步设计相应的模型,通过逐层处理的方式找出图像中的文字区域.

连通性

8邻接

8邻接

可以看到,每一层的图像是由若干连通区域组成的,文字本身是由笔画较为密集组成的,因此往往文字也能够组成一个连通区域. 这里的连通定义为8邻接,即某个像素周围的8个像素都定义为邻接像素,邻接的像素则被定义为同一个连通区域.

定义了连通区域后,每个图层被分割为若干个连通区域,也就是说,我们逐步地将原始图像进行分解,如图9.

点击阅读全文...

9 Jun

路径积分系列:5.例子和综述

路径积分方法为解决某些随机问题带来了新视角.

一个例子:股票价格模型

考虑有风险资产(如股票),在$t$时刻其价格为$S_t$,考虑的时间区间为$[0,T]$,0表示初始时间,$T$表示为到期日. $S_t$看作是随时间变化的连续时间变量,并服从下列随机微分方程:
$$dS_t^0=rS_t^0 dt;\quad dS_t=S_t(\mu dt+\sigma dW_t).\tag{70}$$
其中,$\mu$和$\sigma$是两个常量,$W_t$是一个标准布朗运动.

关于$S_t$的方程是一个随机微分方程,一般解决思路是通过随机微积分. 随机微积分有别于一般的微积分的地方在于,随机微积分在做一阶展开的时候,不能忽略$dS_t^2$项,因为$dW_t^2=dt$. 比如,设$S_t=e^{x_t}$,则$x_t=\ln S_t$
$$\begin{aligned}dx_t=&\ln(S_t+dS_t)-\ln S_t=\frac{dS_t}{S_t}-\frac{dS_t^2}{2S_t^2}\\
=&\frac{S_t(\mu dt+\sigma dW_t)}{S_t}-\frac{[S_t(\mu dt+\sigma dW_t)]^2}{2S_t^2}\\
=&\mu dt+\sigma dW_t-\frac{1}{2}\sigma^2 dW_t^2\quad(\text{其余项均低于}dt\text{阶})\\
=&\left(\mu-\frac{1}{2}\sigma^2\right) dt+\sigma dW_t\end{aligned}
,\tag{71}$$

点击阅读全文...

17 Jun

OCR技术浅探:1. 全文简述

写在前面:前面的博文已经提过,在上个月我参加了第四届泰迪杯数据挖掘竞赛,做的是A题,跟OCR系统有些联系,还承诺过会把最终的结果开源。最近忙于毕业、搬东西,一直没空整理这些内容,现在抽空整理一下。

把结果发出来,并不是因为结果有多厉害、多先进(相反,当我对比了百度的这篇论文《基于深度学习的图像识别进展:百度的若干实践》之后,才发现论文的内容本质上还是传统那一套,远远还跟不上时代的潮流),而是因为虽然OCR技术可以说比较成熟了,但网络上根本就没有对OCR系统进行较为详细讲解的文章,而本文就权当补充这部分内容吧。我一直认为,技术应该要开源才能得到发展(当然,在中国这一点也确实值得商榷,因为开源很容易造成山寨),不管是数学物理研究还是数据挖掘,我大多数都会发表到博客中,与大家交流。

点击阅读全文...

24 Jun

OCR技术浅探:4. 文字定位

经过第一部分,我们已经较好地提取了图像的文本特征,下面进行文字定位. 主要过程分两步:1、邻近搜索,目的是圈出单行文字;2、文本切割,目的是将单行文本切割为单字.

邻近搜索

我们可以对提取的特征图进行连通区域搜索,得到的每个连通区域视为一个汉字. 这对于大多数汉字来说是适用,但是对于一些比较简单的汉字却不适用,比如“小”、“旦”、“八”、“元”这些字,由于不具有连通性,所以就被分拆开了,如图13. 因此,我们需要通过邻近搜索算法,来整合可能成字的区域,得到单行的文本区域.

图13 直接搜索连通区域,会把诸如“元”之类的字分拆开

图13 直接搜索连通区域,会把诸如“元”之类的字分拆开

邻近搜索的目的是进行膨胀,以把可能成字的区域“粘合”起来. 如果不进行搜索就膨胀,那么膨胀是各个方向同时进行的,这样有可能把上下行都粘合起来了. 因此,我们只允许区域向单一的一个方向膨胀. 我们正是要通过搜索邻近区域来确定膨胀方向(上、下、左、右):

邻近搜索* 从一个连通区域出发,可以找到该连通区域的水平外切矩形,将连通区域扩展到整个矩形. 当该区域与最邻近区域的距离小于一定范围时,考虑这个矩形的膨胀,膨胀的方向是最邻近区域的所在方向.

既然涉及到了邻近,那么就需要有距离的概念. 下面给出一个比较合理的距离的定义.

距离

图14 两个示例区域

图14 两个示例区域

如上图,通过左上角坐标$(x,y)$和右下角坐标$(z,w)$就可以确定一个矩形区域,这里的坐标是以左上角为原点来算的. 这个区域的中心是$\left(\frac{x+w}{2},\frac{y+z}{2}\right)$. 对于图中的两个区域$S$和$S'$,可以计算它们的中心向量差
$$(x_c,y_c)=\left(\frac{x'+w'}{2}-\frac{x+w}{2},\frac{y'+z'}{2}-\frac{y+z}{2}\right)\tag{10}$$
如果直接使用$\sqrt{x_c^2+y_c^2}$作为距离是不合理的,因为这里的邻近应该是按边界来算,而不是中心点. 因此,需要减去区域的长度:
$$(x'_c,y'_c)=\left(x_c-\frac{w-x}{2}-\frac{w'-x'}{2},y_c-\frac{z-y}{2}-\frac{z'-y'}{2}\right)\tag{11}$$
距离定义为
$$d(S,S')=\sqrt{[\max(x'_c,0)]^2+[\max(y'_c,0)]^2}\tag{12}$$
至于方向,由$(x_c,y_c)$的幅角进行判断即可.

然而,按照前面的“邻近搜索*”方法,容易把上下两行文字粘合起来,因此,基于我们的横向排版假设,更好的方法是只允许横向膨胀:

邻近搜索 从一个连通区域出发,可以找到该连通区域的水平外切矩形,将连通区域扩展到整个矩形. 当该区域与最邻近区域的距离小于一定范围时,考虑这个矩形的膨胀,膨胀的方向是最邻近区域的所在方向,当且仅当所在方向是水平的,才执行膨胀操作.

结果

有了距离之后,我们就可以计算每两个连通区域之间的距离,然后找出最邻近的区域. 我们将每个区域向它最邻近的区域所在的方向扩大4分之一,这样邻近的区域就有可能融合为一个新的区域,从而把碎片整合.

实验表明,邻近搜索的思路能够有效地整合文字碎片,结果如图15.

图15 通过邻近搜索后,圈出的文字区域

图15 通过邻近搜索后,圈出的文字区域

26 Jun

OCR技术浅探:7. 语言模型

由于图像质量等原因,性能再好的识别模型,都会有识别错误的可能性,为了减少识别错误率,可以将识别问题跟统计语言模型结合起来,通过动态规划的方法给出最优的识别结果.这是改进OCR识别效果的重要方法之一.

转移概率

在我们分析实验结果的过程中,有出现这一案例.由于图像不清晰等可能的原因,导致“电视”一词被识别为“电柳”,仅用图像模型是不能很好地解决这个问题的,因为从图像模型来看,识别为“电柳”是最优的选择.但是语言模型却可以很巧妙地解决这个问题.原因很简单,基于大量的文本数据我们可以统计“电视”一词和“电柳”一词的概率,可以发现“电视”一词的概率远远大于“电柳”,因此我们会认为这个词是“电视”而不是“电柳”.

从概率的角度来看,就是对于第一个字的区域的识别结果$s_1$,我们前面的卷积神经网络给出了“电”、“宙”两个候选字(仅仅选了前两个,后面的概率太小),每个候选字的概率$W(s_1)$分别为0.99996、0.00004;第二个字的区域的识别结果$s_2$,我们前面的卷积神经网络给出了“柳”、“视”、“规”(仅仅选了前三个,后面的概率太小),每个候选字的概率$W(s_2)$分别为0.87838、0.12148、0.00012,因此,它们事实上有六种组合:“电柳”、“电视”、“电规”、“宙柳”、“宙视”、“宙规”.

点击阅读全文...