What other constants can you approximate well in this manner?
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | .42 | EF |
2 | .1.2 | .6 | .053 | BC |
3 | 3每1/2 | .5773 | .00013 | EF |
4 | (4每.3+.1)2 | .57722 | 1.04E每5 | RS |
5 | (4每3+.1.5)每2 | .5772153 | 每2.72E每7 | RS |
6 | (.6((.1+.4)每.3)每.2).5 | .577215656 | 每8.38E每9 | GB |
7 | 3^(每.5每2^(每4每.7^(.1每6))) | .577215666 | 1.21E每9 | RS |
8 | (.4^((6+3*.8)^每7)+.1^.5)^每2 | .5772156648 | 每8.10E每12 | RS |
9 | .8^(.2674^9每1/3)每.5 | .5772156648 | 每4.25E每12 | RS |
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | 每1.7 | EF |
2 | 1+2 | 3. | .28 | EF |
3 | 3每.1每.2 | 2.70 | 每.018 | EF |
4 | 2(.1+.3)每.4 | 2.71829 | 9.16E每6 | RS |
5 | 3.5+4每(.12) | 2.718284 | 1.68E每6 | GB |
6 | ((.4+6.2)*5每1)/3 | 2.71828180 | 每2.66E每8 | BC |
7 | 2^((.3+.1)^每.4每5^每7.6) | 2.718281812 | 每1.57E每8 | RS |
8 | (1+2^每76)^(4^38+.5) | 2.718281828 | 3.96E每47 | RS |
9 | (1+9每47*6)3285 | 2.718281828 | 每2.01E每18457734525360901453873570 | RS |
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | 每2.1 | EF |
2 | 1+2 | 3.0 | 每.14 | EF |
3 | (1/.3)每.2 | 3.13 | 每.0082 | BC |
4 | .4每(2.1).3 | 3.14156 | 每3.26E每5 | GB |
5 | 3+.2/(.4.1+.5) | 3.141598 | 5.92E每6 | BC |
6 | (4+6/(3(.2)(.1))).5 | 3.14159263 | 每1.38E每8 | BC |
7 | 3+1/(7+4(6每5每2)) | 3.14159269 | 4.33E每8 | RS |
8 | 2^(5^.4)每.6每.1^(38/7) | 3.141592654 | 5.15E每10 | RS |
9 | 2^5^.4每.6每(.3^9/7)^(.8^.1) | 3.14159265359 | 6.60E每13 | RS |
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | 每3.6 | RS |
2 | 1/.2 | 5. | .33 | BC |
3 | (.1)每2/3 | 4.64 | 每.027 | RS |
4 | 4*1+2/3 | 4.666 | 每.0025 | RS |
5 | (.3每.1+.4)2/.5 | 4.66923 | 2.94E每5 | RS |
6 | (.3每(.61.5)每.4)2 | 4.6692017 | 1.27E每7 | GB |
7 | .2 + (4 + .5(每13/6)).7 | 4.66920161 | 8.59E每9 | GB |
8 | 4+.8^(3*.6)每.2^(7+.1^.5) | 4.66920161 | 1.01E每8 | RS |
9 | 4+.8^(2*.9)每(7*6)^每3.15 | 4.669201608 | 每3.04E每10 | RS |
Corey Plover suggested the following variant: use the first n decimal digits of a constant instead of the digits 1 through n. He asks, for a given constant, what is the smallest n that gives a closer approximation than the trivial decimal expansion. Here are some answers.
constant | digits | expression | value | error | author |
---|---|---|---|---|---|
污 | .57721 | (1+(7/.7)^每.5)^每2 | .5772153 | 每2.72E每7 | RS |
e | 2.71 | (2每.1)/.7 | 2.714 | 每3.99E每3 | RS |
羽 | 3.141 | (.4^.1)/.3+.1 | 3.1414 | 每1.14E每4 | RS |
This got me thinking. What is the best approximation to these constants using ANY n digits? Here's the best known:
expression | value | error | author | |
---|---|---|---|---|
1 | .6 | .6 | .023 | AZ |
2 | 3每.5 | .5773 | .00013 | EF |
3 | 3每1/2 | .5773 | .00013 | EF |
4 | (1+.1^.5)^每2 | .5772154 | 每2.72E每7 | GB |
5 | 5*.3^(.6^每(.8^每.6)) | .5772154 | 每2.57E每9 | GB |
6 | ((6每(.1^(每.7)))/((.1^(每.4))每.8)) | .5772156642 | 每6.27E每10 | AZ |
expression | value | error | author | |
---|---|---|---|---|
1 | 3 | 3. | .28 | EF |
2 | 2.7 | 2.70 | 每.018 | EF |
3 | 2.4每.4 | 2.71829 | 9.16E每6 | RS |
4 | (.2+6^.2)/.6 | 2.71828180 | 每2.66E每8 | GB |
5 | (1+9每9)99 | 2.718281825 | 每3.50E每9 | RS |
6 | (1+9每9)99+.5 | 2.718281828 | 1.50E每18 | RS |
expression | value | error | author | |
---|---|---|---|---|
1 | 3 | 3. | 每.14 | EF |
2 | .1每.5 | 3.16 | .026 | RS |
3 | .8每4+.7 | 3.1414 | 每1.86E每4 | RS |
4 | 25.4每.6 | 3.141596 | 3.72E每6 | RS |
5 | .8^每(.1^每.1+5)每.9 | 3.14159268 | 3.36E每8 | GB |
6 | ((7每(.3^(每.7)))^(.7^(.8^.8))) | 3.141592656 | 每3.14E每9 | AZ |
expression | value | error | author | |
---|---|---|---|---|
1 | 5 | 5. | .33 | GB |
2 | 9^.7 | 4.656 | 每.014 | GB |
3 | 6^.86 | 4.668 | 3.50E每4 | GB |
4 | 9每6^(.8^.9) | 4.669198 | 每3.33E每6 | GB |
5 | (8^.7)^(.6^每.6每.3) | 4.669201600 | 9.50E每10 | GB |
6 | 8^((.6^(.1每.7)每.3)*.7) | 4.669201600 | 9.50E每10 | GB |
And this got Richard Sabey thinking. What is the best approximation to these constants using the digits 1 through n in that order? Here's the best known:
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | .42 | RS |
2 | .1^.2 | .6 | .053 | RS |
3 | 1.2^每3 | .578 | .0014 | RS |
4 | (1每2^.3)/每.4 | .5778 | 6.45E每4 | RS |
5 | (1+.2^.3/4)*.5 | .5771 | 每8.64E每5 | RS |
6 | 1/(2每.3+.4^.5每.6) | .5772153 | 每2.72E每7 | RS |
7 | (.1每(23^每.45每.6))^.7 | .5772155 | 每7.13E每8 | GB |
8 | ((.1+(2^(3^.4))*5*.6)^.7)/8 | .57721567 | 1.34E每8 | GB |
9 | .1^每(.2/(.3每4^每(.5^每((6*7)^每.8))每.9)) | .5772156644 | 每5.01E每10 | GB |
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | 每1.7 | RS |
2 | 1+2 | 3. | .28 | RS |
3 | 1+2每.3 | 2.70 | 每.018 | RS |
4 | .1+2+.3^.4 | 2.717 | 每4.80E每4 | RS |
5 | 每.1+(每.2+.3)^每.45 | 2.7183 | 1.01E每4 | RS |
6 | (1+2)^(.3+.4^5+.6) | 2.718284 | 2.30E每6 | RS |
7 | 每((.1每2)/.3^.4每.5+6/7) | 2.71828185 | 2.17E每8 | GB |
8 | ((.1^每.2)每((3每.4)^(.5每.6))/.7)^每.8 | 2.718281825 | 每2.77E每9 | GB |
9 | (1+2^(每3*(4+5)))^(.6*.7+8^9) | 2.718281826 | 每1.62E每9 | RS |
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | 每2.1 | RS |
2 | 1+2 | 3.0 | 每.14 | RS |
3 | .1^(每.2每.3) | 3.16 | .020 | RS |
4 | (.1+2^.3)^4 | 3.13 | 每.0018 | RS |
5 | (.1/.2^.3^4)^每.5 | 3.1417 | 1.39E每4 | RS |
6 | .1^(每2/3)+4.5每6 | 3.14158 | 每3.81E每6 | RS |
7 | (1+2^每.3)^.4^(每.5/.6^.7) | 3.1415924 | 每1.88E每7 | RS |
8 | .1^(每2/3)+(4/.5)^每6每.7每.8) | 3.14159264 | 每5.28E每9 | GB |
9 | (.1+2^每(3每(4^每((.5+6^每7)^8))))*9 | 3.14159262 | 2.43E每8 | GB |
n | expression | value | error | author |
---|---|---|---|---|
1 | 1 | 1. | 每3.6 | RS |
2 | 1/.2 | 5. | .33 | RS |
3 | (.1)每2/3 | 4.64 | 每.027 | RS |
4 | 1*2/3+4 | 4.666 | 每.0025 | RS |
5 | .1^.2*(.3每4)/每.5 | 4.6690 | 每1.17E每4 | RS |
6 | 1/(.2每3^每4)每.5^.6 | 4.6691 | 每8.19E每6 | RS |
7 | .12*(.3+(4+.5^每.6)*7) | 4.6692019 | 3.07E每7 | GB |
8 | .1^每(2/((3/4.5)^(6每.7每8))) | 4.669201630 | 2.04E每8 | GB |
9 | 1+2^((3每.4*(.5每.6^7)每.8)^.9) | 4.669201613 | 4.02E每9 | GB |
Richard Sabey also sent results for expressions without using the decimal point, both in any order and in ascending order. Joseph DeVincentis sent results that use the digits 0每n. And thanks to Berend Jan van der Zwaag for finding a bunch of typos.
In 2008, I extended these results by considering the best approximations to various constants using n copies of a given digit. Here are the best results.
n \ k | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
1 | 1 + 1 = 2 | 1 + 1 + 1 = 3 | (. 1)每1/(1+1) = 3.162 | 1 + (1 + 1)1.1 = 3.143 | .1^-(.1+(.1^.1)/(1+1)) = 3.1416 (GB) | 1.1^(11+(1-.1)^-.1) = 3.141598 (GB) |
2 | 2 + 2 = 4 | 2 + 2(. 2) = 3.149 | 22(. 2)(. 2) = 3.144 | 2 + 2 每 2每(. 22) = 3.1414 | 2*(.2+.2+2.2^.2) = 3.1416 (GB) | 2^(2-.2^-(.2^.2-.2^-.2)) = 3.14158 (GB) |
3 | 3.3 = 3.3 | 3 + (. 3)/3 = 3.1 | 333(. 3) = 3.140 | 3 ℅ [(3 每 . 3)(. 3) 每 . 3] = 3.1413 | .3^-((3-.3)^-((3-.3)^-3)) = 3.14157 (GB) | 3/(.33/(.3-3^-3)-.3) = 3.1415929 (GB) |
4 | 4 每 (. 4) = 3.6 | 4 每 (. 4) 每 (. 4) = 3.2 | (. 4)每4(. 4)℅(. 4) = 3.139 | 4 每 4每(. 44)/4 = 3.1414 | ((.4+.4)^-(.4^-(.4^4)))/.4 = 3.141594 (GB) | (4-4/(.4-.4*4^.4))^.4 = 3.141593 (GB) |
5 | 5 ℅ (. 5) = 2.5 | (5 + 5)(. 5) = 3.162 | 5 / [5 ℅ (. 5)](. 5) = 3.162 | 5 每 (. 5)每[5每(. 5)/(. 5)] = 3.1411 | .5+(5^.5)^(.5+.5^.5) = 3.141591 (GB) | .5+.5+.5^-((.5+.5^.5)^.5) = 3.14159268 (GB) |
6 | 6(. 6) = 2.930 | 6.6(. 6) = 3.103 | [6 + (. 6)(. 6)](. 6) = 3.140 | (. 6)[6 ℅(. 6) 每(. 6)每(.
6)] = 3.142 | 6*6*.666^6 = 3.1415 (GB) | (6^.6)/(.6^-(6^-(.6/6))-.6) = 3.141593 (GB) |
7 | 7(. 7) = 3.905 | 7 每 7(. 7) = 3.095 | [(. 7)每7 每 7](. 7) = 3.147 | 77/[7+7℅(. 7)] = 3.1413 | (7*7)^((7*.7)^-.77) = 3.14158 (GB) | 7^-(.7-7^(.7^(7-.7^-.7))) = 3.1415927 (GB) |
8 | (. 8) + (. 8) = 1.6 | (. 8)每8(. 8) = 3.247 | (. 8)每8℅(. 8)℅(. 8) = 3.135 | 8(. 8) / [(. 8) + (. 88)] = 3.1416 | (8/((.8+.8)/.8^.8))^.8 = 3.1416 (GB) | (8^-((.8+.8)^-(8^(.8^.8))))^-8 = 3.1415929 (GB) |
9 | (. 9)每9 = 2.581 | (. 9)每9/(. 9) = 2.868 | 9 ℅ (. 9) ℅ (. 9)9 = 3.138 | (. 9) ℅ [(. 9)(. 9) + (.
9)每9] = 3.1416 | (9-.99*.9)*.9^9 = 3.1415927 (GB) | (.9-.9*(.99-9))*.9^9 = 3.1415927 (GB) |
n \ k | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
1 | 1 + 1 = 2 | 1 + 1 + 1 = 3 | 1 + 1 + (. 1)(. 1) = 2.794 | (1 + 1) ℅ [(. 1) + (. 1)每(. 1)] = 2.717 | 1-.1+(.1+.1)/.11 = 2.7181 (GB) | (1+(.1+.1)^-.1)/(1-.1-.1) = 2.71827 (GB) |
2 | 2 + (. 2) = 2.2 | 2 + (. 2)(. 2) = 2.725 | (. 2)[(.2)每(. 2)每2] = 2.713 | 2[2℅(. 2)]每2℅(. 2) = 2.71829 | 2^(((2^.2)*.2^.2)^-2) = 2.71829 (GB) | 2+(2*(2+2^-2))^-.22 = 2.71827 (GB) |
3 | 3 每 (. 3) = 2.7 | 3 ℅ 3 ℅ (. 3) = 2.7 | 3 ℅ 3每(. 3)℅(. 3) = 2.717 | [(. 3)每3 每 3 ℅ 3](. 3) = 2.7184 | (3-.3+.3^-3)^.3-.3 = 2.71827 (GB) | 3-.3^(.333+3^-.3) = 2.7182817 (GB) |
4 | 4 每 (. 4) = 3.6 | 4 ℅ (. 4)(. 4) = 2.772 | (. 4)每[(. 4)+(. 4)(. 4)] = 2.722 | [(4 + 4) / 4](. 4)每(. 4) = 2.71829 | .4+4^(4^-((.4^-.4)/4)) = 2.718287 (GB) | 4^((4-.4/4)^-(.4-.4*.4)) = 2.7182815 (GB) |
5 | 5 ℅ (. 5) = 2.5 | (. 5) + 5(. 5) = 2.736 | 55(. 5)℅(. 5) = 2.723 | 5 ℅ (. 55) 每 (. 5)5 = 2.7187 | .5^-((5*.5)^(.5-.5/5)) = 2.71829 (GB) | (.5+.5+5^-5)^(.5+5^5) = 2.71828185 (GB) |
6 | 6(. 6) = 2.930 | [6 每 (. 6)](. 6) = 2.751 | (. 6)每(. 6) + (. 6)每(. 6) = 2.717 | (. 6)每[(. 6)℅6(. 66)] = 2.7183 | (6/6+6^-6)^(6^6) = 2.71825 (GB) | (.6+.6+6^(.6+.6))/(6*.6) = 2.71828180 (GB) |
7 | 7(. 7) = 3.905 | (. 7) / 7每(. 7) = 2.733 | 7.7(. 7)℅(. 7) = 2.7188 | 7[(. 77)每7每(. 7)] = 2.71822 | .7^-((7+7*7)^(7^-.7)) = 2.7183 (GB) | (.7^-((7+7)^(7^-.77)))/.7 = 2.7182817 (GB) |
8 | (. 8) + (. 8) = 1.6 | 8 每 8(. 8) = 2.722 | (. 8)[(. 8)每8(. 8)] = 2.716 | (. 8) + 8 ℅ (. 8)8℅(. 8) = 2.7180 | .8*(.8+.8^-8)^(.8*.8) = 2.7181 (GB) | (8/(8-8^-8))^(8/8^-8) = 2.71828183 (GB) |
9 | (. 9)每9 = 2.581 | (. 9) + (. 9) + (. 9) = 2.7 | 9每(. 9) + (. 9)每9 = 2.719 | (. 9) + (. 9) + (. 9)(. 9)℅(. 9) = 2.7181 | 9*(.9+.9)-(9+9)^.9 = 2.7182815 (GB) | (.9/(.9+9^-9))^-(.9/9^-9) = 2.718281824 (GB) |
n \ k | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
1 | (. 1)(. 1) = .794 | [(. 1) ℅ (. 1)](. 1) = .630 | (1 + 1)每(. 1)(. 1) = .576 | (. 1) / (. 11)(. 1)(. 1) = .5773 | .1*((.1+.1)^-1.1-.1) = .5773 (GB) | (1+.1^(1/(1+1)))^-(1+1) = .57723 (GB) |
2 | (. 2)(. 2) = .724 | 2(. 2) / 2 = .574 | 2 每 (. 2)每(. 22) = .575 | [(. 2) / (2 每 (. 2))]2每2 = .5773 | .2+.2^(.2^(.2^(.2^.2))) = .577218 (GB) | 2^-((.2^-.2-.2^-(.2^2))^.2) = .5772151 (GB) |
3 | (. 3) + (. 3) = .6 | (3 + 3)每(. 3) = .584 | 3每3/[3+3] = .5773 | (. 3)每(. 3) 每 [(. 3) + (. 3)](.
3) = .5771 | 3*(.3^(.3^.3))-3^-.3 = .57722 (GB) | .3/.3^((3+(.3+.3)^-3)^-.3) = .5772157 (GB) |
4 | 4每(. 4) = .574 | (. 4) / (. 4)(. 4) = .5770 | (. 4)4℅(. 4) / (. 4) = .5770 | [(. 4)(. 4) 每 (. 44)](. 4) = .57722 | .4*(.4+(4/(4-.4))^.4) = .577217 (GB) | (44+4)^-((4-.4)^-4)-.4 = .5772154 (GB) |
5 | (. 55) = .55 | (. 555) = .555 | [5 ℅ (. 5) + (. 5)]&ndash(. 5) = .5773 | (. 5) / (. 5)[(. 5)(. 5)每(.
5)] = .5771 | .5^(.5+(.5^-.55)/5) = .5772158 (GB) | .5/(.5+5^-((5^(.5^.5))/5)) = .5772158 (GB) |
6 | (. 66) = .66 | 6每(. 6) / (. 6) = .569 | [6 / 6 每 (. 6)](. 6) = .5770 | [66每6 每 (. 6)](.
6) = .5771 | .6-(6^.6)*((.6^6)/6) = .5772151 (GB) | (.6+(6-(.6^-.6)/6)^.6)/6 = .5772158 (GB) |
7 | (. 7) ℅ (. 7) = .49 | 7 ℅ 7(. 7) = .576 | [(. 7) ℅ (. 7)](. 77) = .5773 | (. 7) 每 [(. 7) / (7 + 7)](. 7) = .5771 | (.7^(.7*(.7+.7)))^-.7-.7 = .577211 (GB) | .7-((7-.7)^-(7^-(.7^-.7)))/7 = .5772158 (GB) |
8 | (. 8) ℅ (. 8) = .64 | (. 8) 每 8每(. 8) = .610 | 8每8每(. 8)℅(. 8) = .57723 | [(. 8) ℅ (. 8)]8(. 8)/8 = .57727 | (.8*8^(.8^8.8))^-8 = .577216 (GB) | ((8^-((.8^8)*(.8^.8)))/.8)^8 = .577216 (GB) |
9 | (. 9)9 = .387 | [(. 9) + (. 9)]每(. 9) = .589 | [(. 9) ℅ (. 9)](. 9)每9 = .580 | [(. 9) + 9每(. 9)] / [(. 9) + (. 9)] = .576 | (9^(.9-.9^(9+9)))/9 = .57723 (GB) | (9-.9/9)/(9+9-.9^-9) = .577216 (GB) |
n \ k | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
1 | 1 + 1 = 2 | 1 / [(. 1) + (. 1)] = 5 | 1 / [(. 11) + (. 1)] = 4.762 | (1 + 1)每1.1 / (. 1) = 4.665 | .1^-((.1^.1-.1)^1.1) = 4.67 (GB) | .1+.1+1/(1-.1^.11) = 4.66921 (GB) |
2 | 2 + 2 = 4 | 22.2 = 4.594 | 2每(. 2)/2 / (. 2) = 4.665 | 2 + 2 + (. 2)2每2 = 4.668 | .2+(2*2^.2)^(2-.2) = 4.6691 (GB) | .2^-(.2^(2^-(2+.2^-(.2^.2)))) = 4.669203 (GB) |
3 | 3 + 3 = 6 | 3(. 3) / (. 3) = 4.634 | (. 33)每3(. 3) = 4.671 | 3[3 + (. 3) ℅ (. 3)](. 3) = 4.6697 | 3*(.3+.3+.3^(3^-3)) = 4.6691 (GB) | .3^-((.3+.3)^(.3^3))+3^.3 = 4.6692014 (GB) |
4 | 4 + (. 4) = 4.4 | 4 + (. 4)(. 4) = 4.693 | 4 + (. 4)(. 44) = 4.668 | 4 / [(. 4) + (. 4)](. 4)(.
4) = 4.6690 | 4+.4^(.4/(.4^(.4/4))) = 4.6691 (GB) | .44-(4/.4^.4-4/.4) = 4.669200 (GB) |
5 | 5 每 (. 5) = 4.5 | (. 5)每5(. 5) = 4.711 | 5 ℅ (. 5)(. 5)/5 = 4.665 | [5 每 (. 5)每(. 5)每(. 5)] / (.
5) = 4.6697 | 5-(5^-(.5*5^.5))/.5 = 4.669205 (GB) | .5^5+5.5^((5-.5)/5) = 4.669203 (GB) |
6 | 6 每 (. 6) = 5.4 | 6 每 (. 6)每(. 6) = 4.641 | 6 每 (. 6) 每 (. 6)(. 6) = 4.663 | 6 每 6(. 6)6℅(.6) = 4.670 | 6^(6/(6+.6^(.6^6))) = 4.6691 (GB) | 6*(.6^((6-.6)/66))^6 = 4.66921 (GB) |
7 | 7 ℅ (. 7) = 4.9 | (. 7) + 7(. 7) = 4.604 | (. 77) + 7(. 7) = 4.674 | (. 7) ℅ [7 每 (7℅(. 7))每(. 7)] = 4.6698 | 7^(.7^(.7^(.7+.7*.7))) = 4.6691 (GB) | ((.77+.7^.7)/(7+7))^-.7 = 4.6692019 (GB) |
8 | 8(. 8) = 5.278 | (. 8) / (. 8)8 = 4.768 | (. 88) / 8每(. 8) = 4.644 | [8 / (. 8)](. 8)℅(. 8)(. 8) = 4.668 | .8*(8/(.8+.8)+.8^.8) = 4.669209 (GB) | 8/(8^.8-.8^-(8.8^.8)) = 4.6691 (GB) |
9 | (. 9)每9 = 2.581 | 9 / [(. 9) + (. 9)] = 5 | [(. 9) + (. 9)] / 9(. 9) = 4.646 | (. 9) + (. 9) + (. 9)每9 / (. 9) = 4.667 | 9^.9-.99*.9^-9 = 4.6693 (GB) | .9/(.99+.9-(.9+.9)^.9) = 4.669207 (GB) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 5/15/08.