11 Nov

JoSE:球面上的词向量和句向量

这篇文章介绍一个发表在NeurIPS 2019的做词向量和句向量的模型JoSE(Joint Spherical Embedding),论文名字是《Spherical Text Embedding》。JoSE模型思想上和方法上传承自Doc2Vec,评测结果更加漂亮,但写作有点故弄玄虚之感。不过笔者决定写这篇文章,是因为觉得里边的某些分析过程有点意思,可能会对一般的优化问题都有些参考价值。

优化目标

在思想上,这篇文章基本上跟Doc2Vec是一致的:为了训练句向量,把句子用一个id表示,然后把它也当作一个词,跟句内所有的词都共现,最后训练一个Skip Gram模型,训练的方式都是基于负采样的。跟Doc2Vec不一样的是,JoSE将全体向量的模长都归一化了(也就是只考虑单位球面上的向量),然后训练目标没有用交叉熵,而是用hinge loss:
\begin{equation}\max(0, m - \cos(\boldsymbol{u}, \boldsymbol{v}) - \cos(\boldsymbol{u}, \boldsymbol{d}) + \cos(\boldsymbol{u}', \boldsymbol{v}) + \cos(\boldsymbol{u}', \boldsymbol{d})\label{eq:loss}\end{equation}

点击阅读全文...

6 Nov

Keras:Tensorflow的黄金标准

这两周投入了比较多的精力去做bert4keras的开发,除了一些API的规范化工作外,其余的主要工作量是构建预训练部分的代码。在昨天,预训练代码基本构建完毕,并同时在TPU/多GPU环境下测试通过,从而有志(有算力)改进预训练模型的同学多了一个选择。——这可能是目前最为清晰易懂的bert及其预训练代码。

预训练代码链接: https://github.com/bojone/bert4keras/tree/master/pretraining

经过这两周的开发(填坑),笔者的最大感想就是:Keras已经成为了tensorflow的黄金标准了。只要你的代码按照Keras的标准规范写,那可以轻松迁移到tf.keras中去,继而可以非常轻松地在TPU或多GPU环境下训练,真正的几乎是一劳永逸。相反,如果你的写法过于灵活,包括像笔者之前介绍的很多“移花接木”式的Keras技巧,就可能会有不少问题,甚至可能出现的一种情况是:就算你已经在多GPU上跑通了,在TPU上你也死活调不通。

Keras和Tensorflow

Keras和Tensorflow

点击阅读全文...

31 Oct

从去噪自编码器到生成模型

在我看来,几大顶会之中,ICLR的论文通常是最有意思的,因为它们的选题和风格基本上都比较轻松活泼、天马行空,让人有脑洞大开之感。所以,ICLR 2020的投稿论文列表出来之后,我也抽时间粗略过了一下这些论文,确实发现了不少有意思的工作。

其中,我发现了两篇利用去噪自编码器的思想做生成模型的论文,分别是《Learning Generative Models using Denoising Density Estimators》《Annealed Denoising Score Matching: Learning Energy-Based Models in High-Dimensional Spaces》。由于常规做生成模型的思路我基本都有所了解,所以这种“别具一格”的思路就引起了我的兴趣。细读之下,发现两者的出发点是一致的,但是具体做法又有所不同,最终的落脚点又是一样的,颇有“一题多解”的美妙,遂将这两篇论文放在一起,对比分析一翻。

fashion mnist、CelebA、cifar10上的生成效果

fashion mnist、CelebA、cifar10上的生成效果

点击阅读全文...

27 Oct

什么时候多进程的加速比可以大于1?

多进程或者多线程等并行加速目前已经不是什么难事了,相信很多读者都体验过。一般来说,我们会有这样的结论:多进程的加速比很难达到1。换句话说,当你用10进程去并行跑一个任务时,一般只能获得不到10倍的加速,而且进程越多,这个加速比往往就越低。

要注意,我们刚才说“很难达到1”,说明我们的潜意识里就觉得加速比最多也就是1。理论上确实是的,难不成用10进程还能获得20倍的加速?这不是天上掉馅饼吗?不过我前几天确实碰到了一个加速比远大于1的例子,所以在这里跟大家分享一下。

词频统计

我的原始任务是统计词频:我有很多文章,然后我们要对这些文章进行分词,最后汇总出一个词频表出来。一般的写法是这样的:

tokens = {}

for text in read_texts():
    for token in tokenize(text):
        tokens[token] = tokens.get(token, 0) + 1

这种写法在我统计THUCNews全部文章的词频时,大概花了20分钟。

点击阅读全文...

19 Oct

让我们不厌其烦地回顾一下:最小熵原理是一个无监督学习的原理,“熵”就是学习成本,而降低学习成本是我们的不懈追求,所以通过“最小化学习成本”就能够无监督地学习出很多符合我们认知的结果,这就是最小熵原理的基本理念。

这篇文章里,我们会介绍一种相当漂亮的聚类算法,它同样也体现了最小熵原理,或者说它可以通过最小熵原理导出来,名为InfoMap,或者MapEquation。事实上InfoMap已经是2007年的成果了,最早的论文是《Maps of random walks on complex networks reveal community structure》,虽然看起来很旧,但我认为它仍是当前最漂亮的聚类算法,因为它不仅告诉了我们“怎么聚类”,更重要的是给了我们一个“为什么要聚类”的优雅的信息论解释,并从这个解释中直接导出了整个聚类过程。

一个复杂有向图网络示意图。图片来自InfoMap最早的论文《Maps of random walks on complex networks reveal community structure》

一个复杂有向图网络示意图。图片来自InfoMap最早的论文《Maps of random walks on complex networks reveal community structure》

当然,它的定位并不仅仅局限在聚类上,更准确地说,它是一种图网络上的“社区发现”算法。所谓社区发现(Community Detection),大概意思是给定一个有向/无向图网络,然后找出这个网络上的“抱团”情况,至于详细含义,大家可以自行搜索一下。简单来说,它跟聚类相似,但是比聚类的含义更丰富。(还可以参考《什么是社区发现?》

点击阅读全文...

11 Oct

BN究竟起了什么作用?一个闭门造车的分析

BN,也就是Batch Normalization,是当前深度学习模型(尤其是视觉相关模型)的一个相当重要的技巧,它能加速训练,甚至有一定的抗过拟合作用,还允许我们用更大的学习率,总的来说颇多好处(前提是你跑得起较大的batch size)。

那BN究竟是怎么起作用呢?早期的解释主要是基于概率分布的,大概意思是将每一层的输入分布都归一化到$\mathcal{N}(0,1)$上,减少了所谓的Internal Covariate Shift,从而稳定乃至加速了训练。这种解释看上去没什么毛病,但细思之下其实有问题的:不管哪一层的输入都不可能严格满足正态分布,从而单纯地将均值方差标准化无法实现标准分布$\mathcal{N}(0,1)$;其次,就算能做到$\mathcal{N}(0,1)$,这种诠释也无法进一步解释其他归一化手段(如Instance Normalization、Layer Normalization)起作用的原因。

在去年的论文《How Does Batch Normalization Help Optimization?》里边,作者明确地提出了上述质疑,否定了原来的一些观点,并提出了自己关于BN的新理解:他们认为BN主要作用是使得整个损失函数的landscape更为平滑,从而使得我们可以更平稳地进行训练。

本博文主要也是分享这篇论文的结论,但论述方法是笔者“闭门造车”地构思的。窃认为原论文的论述过于晦涩了,尤其是数学部分太不好理解,所以本文试图尽可能直观地表达同样观点。

(注:阅读本文之前,请确保你已经清楚知道BN是什么,本文不再重复介绍BN的概念和流程。)

点击阅读全文...

29 Sep

“让Keras更酷一些!”:层与模型的重用技巧

今天我们继续来深挖Keras,再次体验Keras那无与伦比的优雅设计。这一次我们的焦点是“重用”,主要是层与模型的重复使用。

所谓重用,一般就是奔着两个目标去:一是为了共享权重,也就是说要两个层不仅作用一样,还要共享权重,同步更新;二是避免重写代码,比如我们已经搭建好了一个模型,然后我们想拆解这个模型,构建一些子模型等。

基础

事实上,Keras已经为我们考虑好了很多,所以很多情况下,掌握好基本用法,就已经能满足我们很多需求了。

层的重用

层的重用是最简单的,将层初始化好,存起来,然后反复调用即可:

x_in = Input(shape=(784,))
x = x_in

layer = Dense(784, activation='relu') # 初始化一个层,并存起来

x = layer(x) # 第一次调用
x = layer(x) # 再次调用
x = layer(x) # 再次调用

点击阅读全文...

18 Sep

从语言模型到Seq2Seq:Transformer如戏,全靠Mask

相信近一年来(尤其是近半年来),大家都能很频繁地看到各种Transformer相关工作(比如Bert、GPT、XLNet等等)的报导,连同各种基础评测任务的评测指标不断被刷新。同时,也有很多相关的博客、专栏等对这些模型做科普和解读。

单向语言模型图示。每预测一个token,只依赖于前面的token。

单向语言模型图示。每预测一个token,只依赖于前面的token。

俗话说,“外行看热闹,内行看门道”,我们不仅要在“是什么”这个层面去理解这些工作,我们还需要思考“为什么”。这个“为什么”不仅仅是“为什么要这样做”,还包括“为什么可以这样做”。比如,在谈到XLNet的乱序语言模型时,我们或许已经从诸多介绍中明白了乱序语言模型的好处,那不妨更进一步思考一下:

为什么Transformer可以实现乱序语言模型?是怎么实现的?RNN可以实现吗?

本文从对Attention矩阵进行Mask的角度,来分析为什么众多Transformer模型可以玩得如此“出彩”的基本原因,正如标题所述“Transformer如戏,全靠Mask”,这是各种花式Transformer模型的重要“门道”之一。

读完本文,你或许可以了解到:

1、Attention矩阵的Mask方式与各种预训练方案的关系;

2、直接利用预训练的Bert模型来做Seq2Seq任务。

点击阅读全文...