宇宙驿站感谢国家天文台LAMOST项目之“宇宙驿站”提供网络空间和数据库资源! 感谢国家天文台崔辰州博士等人的多方努力和技术支持!

版权科学空间致力于知识分享,所以欢迎您转载本站文章,但转载本站内容必须遵循 署名-非商业用途-保持一致 的创作共用协议。

参与科学空间

为了保证你的利益,推荐你注册为本站会员。同时欢迎通过邮件或留言进行交流、建议或反馈科学空间的问题。
会员注册 会员登录 查看全站文章归档页

7 Jun

通过msign来计算mclip(奇异值裁剪)

前面我们用了两篇文章《msign算子的Newton-Schulz迭代(上)》《msign算子的Newton-Schulz迭代(下)》讨论了矩阵的$\newcommand{msign}{\mathop{\text{msign}}}\newcommand{sign}{\mathop{\text{sign}}}\newcommand{clip}{\mathop{\text{clip}}}\newcommand{mclip}{\mathop{\text{mclip}}}\msign$算子的数值计算,这篇文章我们来关注“奇异值裁剪(Singular Value Clipping)”运算,它最近在 @_arohan_ 的推特上引起了热议,我们此前在《高阶muP:更简明但更高明的谱条件缩放》也提到过,接下来我们简称为$\mclip$。

基本概念

对于标量$x$,$\clip$运算定义为
\begin{equation}\clip(x) = \max(\min(x, 1), -1) = \left\{\begin{aligned}1, &\quad x\geq 1 \\
x, &\quad x\in(-1, 1)\\
-1, &\quad x\leq -1
\end{aligned}\right.\end{equation}

点击阅读全文...

5 Jun

msign算子的Newton-Schulz迭代(下)

在上文《msign算子的Newton-Schulz迭代(上)》中,我们试图为$\mathop{\text{msign}}$算子寻找更好的Newton-Schulz迭代,以期在有限迭代步数内能达到尽可能高的近似程度,这一过程又可以转化为标量函数$\mathop{\text{sign}}(x)$寻找同样形式的多项式迭代。当时,我们的求解思路是用Adam优化器端到端地求一个局部最优解,虽然有效但稍显粗暴。

而在几天前,arXiv新出了一篇论文《The Polar Express: Optimal Matrix Sign Methods and Their Application to the Muon Algorithm》,作者运用了一系列精妙的数学结论,以优雅且硬核的方式给出了更漂亮的答案。本文让我们一起欣赏和学习一番这篇精彩的论文。

问题描述

相关背景和转化过程我们就不再重复了,直接给出我们要求解的问题是
\begin{equation}\mathop{\text{argmin}}_f d(f(x),1)\end{equation}

点击阅读全文...

2 Jun

等值振荡定理:最优多项式逼近的充要条件

最近在阅读时,遇到了一个关于最优多项式逼近的“等值振荡定理(Equioscillation Theorem)”,证明过程还涉及到无穷范数求导,感觉结论和证明都颇为新奇,特来记录一番。

参考资料:《Notes on how to prove Chebyshev’s equioscillation theorem》《Approximation Theory – Lecture 5》

等值振荡

我们先展示一下结论:

等值振荡定理 设$f(x)$是不超过$n$阶的多项式,$g(x)$是区间$[a,b]$上的连续函数,那么
\begin{equation}f^* = \mathop{\text{argmin}}_f \max_{x\in[a,b]} |f(x) - g(x)|\end{equation}
的充要条件是存在$a\leq x_0 < x_1 < \cdots < x_{n+1} \leq b$以及$\sigma\in\{0,1\}$,使得
\begin{equation}f^*(x_k) - g(x_k) = (-1)^{k+\sigma} \max_{x\in[a,b]} |f^*(x) - g(x)|\end{equation}

点击阅读全文...

26 May

众所周知,生成速度慢是扩散模型一直以来的痛点,而为了解决这个问题,大家可谓“八仙过海,各显神通”,提出了各式各样的解决方案,然而长久以来并没一项工作能够脱颖而出,成为标配。什么样的工作能够达到这个标准呢?在笔者看来,它至少满足几个条件:

1、数学原理清晰,能够揭示出快速生成的本质所在;

2、能够单目标从零训练,不需要对抗、蒸馏等额外手段;

3、单步生成接近SOTA,可以通过增加步数提升效果。

根据笔者的阅读经历,几乎没有一项工作能同时满足这三个标准。然而,就在几天前,arXiv出了一篇《Mean Flows for One-step Generative Modeling》(简称“MeanFlow”),看上去非常有潜力。接下来,我们将以此为契机,讨论一下相关思路和进展。

点击阅读全文...

16 May

MoE环游记:5、均匀分布的反思

如果说Meta的LLAMA系列为Dense模型确立了标准架构,那么DeepSeek或许就是MoE标准架构的奠基者。当然,这并非指DeepSeek首创了MoE,也不是说它的MoE不可超越,而是指DeepSeek对MoE所提的一些改进,很可能都是效果增益比较显著的方向,从而逐渐成为MoE的标配。这其中,包括我们在《MoE环游记:3、换个思路来分配》介绍的Loss-Free负载均衡方案,还有本文将要介绍的Shared Expert、Fine-Grained Expert策略。

说到负载均衡,它无疑是MoE一个极为重要的目标,本系列的第2~4篇,可以说都在围绕着它展开。然而,已有读者逐渐意识到,这里边有个尚未回答的本质问题:抛开效率上的需求不谈,均匀分布就一定是效果最好的方向吗?本文就带着这个疑问,去理解Shared Expert、Fine-Grained Expert。

共享专家

让我们再次回顾MoE的基本形式
\begin{equation}\boldsymbol{y} = \sum_{i\in \mathop{\text{argtop}}_k \boldsymbol{\rho}} \rho_i \boldsymbol{e}_i\end{equation}

点击阅读全文...

分类:信息时代    标签:优化, 稀疏, moe 阅读全文 19 评论
11 May

msign算子的Newton-Schulz迭代(上)

在之前的《Muon优化器赏析:从向量到矩阵的本质跨越》《Muon续集:为什么我们选择尝试Muon?》等文章中,我们介绍了一个极具潜力、有望替代Adam的新兴优化器——“Muon”。随着相关研究的不断深入,Muon优化器受到的关注度也在日益增加。

了解过Muon的读者都知道,Muon的核心运算是$\newcommand{msign}{\mathop{\text{msign}}}\msign$算子,为其寻找更高效的计算方法是学术社区的一个持续目标。本文将总结一下它的最新进展。

写在前面

$\msign$的定义跟SVD密切相关。假设矩阵$\boldsymbol{M}\in\mathbb{R}^{n\times m}$,那么
\begin{equation}\boldsymbol{U},\boldsymbol{\Sigma},\boldsymbol{V}^{\top} = \text{SVD}(\boldsymbol{M}) \quad\Rightarrow\quad \msign(\boldsymbol{M}) = \boldsymbol{U}_{[:,:r]}\boldsymbol{V}_{[:,:r]}^{\top}\end{equation}
其中$\boldsymbol{U}\in\mathbb{R}^{n\times n},\boldsymbol{\Sigma}\in\mathbb{R}^{n\times m},\boldsymbol{V}\in\mathbb{R}^{m\times m}$,$r$是$\boldsymbol{M}$的秩。简单来说,$\msign$就是把矩阵的所有非零奇异值都变成1后所得的新矩阵。

点击阅读全文...

4 May

Transformer升级之路:20、MLA究竟好在哪里?

自从DeepSeek爆火后,它所提的Attention变体MLA(Multi-head Latent Attention)也愈发受到关注。MLA通过巧妙的设计实现了MHA与MQA的自由切换,使得模型可以根据训练和推理的不同特性(Compute-Bound or Memory-Bound)选择最佳的形式,尽可能地达到效率最大化。

诚然,MLA很有效,但也有观点认为它不够优雅,所以寻找MLA替代品的努力一直存在,包括我们也有在尝试。然而,经过一段时间的实验,我们发现很多KV Cache相同甚至更大的Attention变体,最终效果都不如MLA。这不得不让我们开始反思:MLA的出色表现背后的关键原因究竟是什么?

接下来,本文将详细介绍笔者围绕这一问题的思考过程以及相关实验结果。

观察

MLA提出自DeepSeek-V2,本文假设读者已经熟悉MLA,至少了解之前的博客《缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA》所介绍的内容,因此MLA自身的细节将不会过多展开。

点击阅读全文...

30 Apr

一道概率不等式:盯着它到显然成立为止!

前两天,QQ群里有群友抛出了一道不等式求证:

一道概率相关的不等式,出自《There is no fast single hashing algorithm》

一道概率相关的不等式,出自《There is no fast single hashing algorithm》

简短的题目,加上“easily”的提示,让人觉得这似乎是显然成立的结果,然而提问者却表示尝试了很久仍未果。那么实际情况如何呢?是否真的是显然成立呢?

初步尝试

题目等价于证
\begin{equation}\sum_{i=0}^j p^i \leq \sum_{i=0}^j \left(\log\frac{1}{1-p}\right)^i/i!,\qquad p\in[0, 1)\label{eq:q}\end{equation}

点击阅读全文...