13 Mar

一维弹簧的运动(下)

在上一篇文章中,我们得到了一维弹簧运动的方程
$$m\frac{\partial^2 X}{\partial t^2}=k\frac{\partial^2 X}{\partial \xi^2}$$
并且得到了通解
$$X=F(u)+H(v)=F(\xi+\beta t)+H(\xi-\beta t)$$
或者
$$X(\xi,t)=\frac{1}{2}\left[X_0(\xi+\beta t)+X_0(\xi-\beta t)\right]+\frac{1}{2\beta}\int_{\xi-\beta t}^{\xi+\beta t} X_1 (s)ds$$
在文章的末尾,提到过这个解是有些问题的。现在让我们来详细分析它。

阅读剩余部分...

11 Mar

一维弹簧的运动(上)

我们通常用一个波动方程来描述弦的振动,但是,弦的振动是二维的,也就是说,它的“波”是在垂直方向的位移。让我们来考虑一根一端固定的一维理想弹簧,胡克系数为$k$,它的松弛状态是均匀的,线密度是$\rho$,长度是$l$,质量是$m$。

如何弹?
我们要分析这根弹簧的运动,即给定弹簧的初始状态,看弹簧的密度如何变化,这种情况类似于“横波”。但是,弹簧本身是连续介质,这是我们不熟悉的,但是我们可以将它离散化,将它看成无数个小质点的弹簧链。如下图

离散的弹簧.png

阅读剩余部分...

10 Jul

弹簧双体运动

这也是我们期末考的题目,是理综的物理题之一。

一个零质量的理想弹簧两端分别系着一个质量为m的质点物体(A左B右),现给A一个向右的速度v0,使得整体开始运动。问弹簧压缩到最短时弹性势能是多少?以及B质点的最大速度是多少?

高中生是通过结合动量守恒和能量守恒来求解的。而我希望通过微分方程把握这个运动的整体信息,顺便验证弹簧能否将A的速度v0完全传递给B。

阅读剩余部分...

5 Apr

重提“旋转弹簧伸长”问题(变分解法)

感谢Awank-Newton读者的来信,本文于2013.01.30作了修正,主要是弹性势能的正负号问题。之前连续犯了两个错误,导致得出了正确答案。现在已经修正。参考《平衡态公理的修正与思考》

在下面的两篇文章中,BoJone已经介绍了这个“旋转弹簧伸长”的问题,并从两个角度提供了两种解答方法。前者列出了一道积分方程,然后再转变为微分方程来解;后者直接从弹性力学的角度来列出一道二阶微分方程,两者殊途同归。
http://kexue.fm/archives/782/
http://kexue.fm/archives/826/

今天,再经过一段时间的变分法涉猎后,BoJone尝试从变分的角度(总能量最小)来给出一种新的解法。同样设r为旋转达到平衡后弹簧上一点到旋转中心的距离,该点的线密度为$\lambda =\lambda (r)$,该点到中心的弹簧质量为$m=m(r)$,旋转前的长度为$l_0$,旋转平衡后的长度为$l_1$。由于弹簧旋转后已经达到了平衡状态,由平衡态公理(参看《自然极值》系列),平衡意味着总能量“动能-势能”取极值。

阅读剩余部分...

7 Aug

旋转的弹簧将如何伸长(2)?

弹簧.jpg上一次我从密度的角度讨论了旋转的弹簧伸长的问题,由于对弹性形变等问题是初涉,所以花了好大功夫。这几天重新认识了一下胡克定律,并且从另外的角度给出了这道题目的一个相对简单的解法。在此把它记录下来,并写写我对弹性形变的一些粗浅看法。

在解答的过程中,我再次体验到了殊途同归的感觉,科学就是这样的奇妙,一个目的地往往有着不止一条道路,不同的道路会给我们不同的科学视觉,最终领略到不同的科学美景;多走几条路,更能够让我们从不同的角度领略美不胜收的科学,这也是众多旅游爱好者不辞千里地观赏美景的原因!

阅读剩余部分...

30 Jul

旋转的弹簧将如何伸长?

旋转的弹簧.PNG

一根均匀的弹簧长度l

0

,线密度λ

0

,劲度系数k,总质量M。现在没有重力的环境下,绕其一端作角速度ω的旋转(角速度恒定),则此时其长度变为多少?

这是网友“宇宙为家”在几天前提出的问题。期间我曾做过多次解答,犯了若干次错误,经过修修补补,得出了最后的答案,在此感谢“宇宙为家”朋友的多次提醒。如果下面的答案依旧有错误,望各位读者发现并指出。

阅读剩余部分...