30 Apr

引力透镜——用经典力学推导光的偏转公式

引力透镜
————用经典力学推导光的引力偏转角公式

引力透镜效应造成的爱因斯坦十字.jpg在2012年第四期的《天文爱好者》上,Richard de Grijs(何锐思)教授的《引力透镜——再领科学潮》一文详细而精彩地讲述了有关引力透镜方面的知识,尤其是它在天文方面的重要应用,让我收获颇丰。笔者在赞叹作者优美的文笔和译者程思浩同好的生动翻译之余,也感到了一丝不足。文章主要讲了引力透镜在天文研究中所扮演的重要角色,却未对引力透镜的原理、本质方面多加描述。时空的扭曲是广义相对论给出的答案,可是难道仅仅从经典力学就不能领略丝毫?藉此,BoJone这在里对引力透镜多说些东西,与大家相互学习研究。当然,由于我只是一个初出茅庐的业余爱好者,其中的不当之处还望各位斧正。

阅读剩余部分...

13 Jan

混沌的世界——“星之轨迹”的研究

(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)
《天爱》杂志页面.JPG
在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?

本文就让我们来更深入地了解一下N体问题的研究历史。

观测&拟合时代

由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。

阅读剩余部分...

20 Jan

《方程与宇宙》:三体问题和它的初积分(六)

The Three Body Problem and its Classical Integration

很多天文爱好者都已经接触到了“二体问题”(我们在高中学习到的“开普勒三定律”就是内容之一),由于在太阳系中行星质量相对较小而且距离相对较远,应用“二体问题”的解对天体进行计算、预报等能够满足一定的近似需求。不过,如果需要更高精度的计算,就不能把其他行星的引力给忽略掉了,于是就产生了所谓N体问题(N-Body Problem),即N个质点尽在它们各自引力的相互作用下的运动规律问题。最简单的二体已经被彻底解决,而三体或更多体的问题则与二体大相径庭,因为庞加莱证明了,三体问题不能严格求解,而且这是一个混沌系统,任何微小的扰动都会造成不可预期的效果。

根据牛顿力学,选择惯性参考系,设三个质点分别为$M_1,M_2,M_3$,向径分别为$\vec{r_1},\vec{r_2},\vec{r_3}$,可以列出运动方程(以下的导数都默认是对时间t求导)

阅读剩余部分...

9 Jan

不可能事件——一道经典电磁感应题的错误

相信高二理科的学生都会做过这样的一道题目:

光滑导轨-电磁感应.PNG
水平放置于匀强磁场中的光滑导轨上,磁感应强度为B,平衡导轨的距离为L,有一根导体棒ab,用恒力F作用在ab上,由静止开始运动,回路总电阻为R,求ab的最大速度。


对于高二学生来说,这样的题目是很好解决的。只要列出
$E=BLv,I=\frac{E}{R},f_1=BIL$,并根据当匀速运动时速度最大,由受力平衡有$f_1=F$,解得
(E:感应电动势;I:感应电流;f1:安培力)
$$v=\frac{FR}{B^2 L^2}$$

阅读剩余部分...

19 Dec

N体问题的30个周期性解

转载自:http://www.matrix67.com/blog/archives/3979

源文件来自这里,提供了多体问题中颇具代表性的 47 个解的数据(本文附带下载),是gnuplot 格式。Matrix67选择了其中 30 个,用 Mathematica 读出数据,生成了 30 个直观的 gif 动画。大家将会看到,在引力的作用下,多颗星体可能会形成的一些极其诡异的轨道。后面的解越来越不平凡,可见多体问题之难。

N体问题周期解 (1).gif

阅读剩余部分...

19 Dec

太阳系是稳定的吗?

Greg Laughlin 文 Shea 译
转载自科学松鼠会

当牛顿遇上“混沌”,行星的轨道会失控吗?

UnstableSS_Pendulum.jpg

阅读剩余部分...

28 Nov

《自然极值》系列——4.费马点问题

通过上面众多的文字描述,也许你还不大了解这两个原理有何美妙之处,也或者你已经迫不及待地想去应用它们却不知思路。为了不至于让大家产生“审美疲劳”,接下来我们将试图利用这两个原理对费马点问题进行探讨,看看原理究竟是怎么发挥作用的。运用的关键在于:如何通过适当的变换将其与光学或势能联系起来。

费马点问题.PNG

传统费马点问题是指在ΔABC中寻找点P,使得$AP+BP+CP$最小的问题;而广义的费马点则改成使$k_1 AP+k_2 BP+k_3 CP$最小。这是很具有现实意义的,是“在三个村庄之间建立一个中转站,如何才能使运送成为最低”之类的最优问题。我们将从光学和势能两个角度对这个问题进行探讨(也许有的读者已经阅读过了利用重力的原理来求解费马点,但是我想光学的方法依然会是你眼前一亮的。

阅读剩余部分...

16 Aug

《方程与宇宙》:拉格朗日点,复数,向量(五)

The New Calculation Of Lagrangian Point 4,5

上一回我们已经求出了拉格朗日点L1,L2,L3,并且希望能够求出L4,L5两个点。由于L4,L5与“地球-太阳”连线已经不共线了,所以前边的方法貌似不能够用了。为了得到一个通用的定义,我们可以采用以下方法来描述拉格朗日点:位于拉格朗日点的天体,它与太阳的连线以及地球与太阳的连线所组成的角的大小是恒定的。(这里为了方便,采用了地日系的拉格朗日点来描述,对于一般的三体问题是一样的)

对于L4,L5来说,我们或许可以设置一个新的向量来描述这两点的向径(如$\vec{R}$)。当我们这样做后,很快就会发现这样会令我们的计算走向死胡同。因为我们发现:已知两个向量的夹角和其中一个向量,我们很难把另一个向量用已知向量的式子表达出来。不能做到这一点,就不能找出$\vec{R}$与$\vec{r}$的关系,就无法联立方程求解。难道,我们这一条路走到尽头了吗?一开始BoJone也冥思苦想不得头绪,但是...

阅读剩余部分...