帅气的天才科学家费曼.jpg似乎有好久都没有写文章感觉,高考结束了,继续研究。先总结一下考前的一些结果。

这个文章讲的是一个叫“积分符号内取微分”东西,这是一个很有趣而且有用的求定积分的方法。在这里我又擅自把它叫做“费曼积分法”,因为我是从费曼的自传《别闹了,费曼先生》中看到这种方法的。当然,费曼不是这个方法的首创者,他仅仅是是喜欢、熟练这种方法,并将它记载在了自传中。具体情况是怎样的呢?我先不多说,请读者直接看《别闹了,费曼先生》中的情节。

别闹了费曼先生.txt

情节一:跟数学家抬杠(P73)

那本书还教你如何对积分符号内的参数求微分。后来我发现,一般大学课程并不怎么教这个技巧,但我掌握了它的用法,往后还一再地用到它。因此,靠着自修那本书,我做积分的方法往往与众不同。

结果经常发生的是,我在麻省理工或普林斯顿的朋友被某些积分难住,原因却是他们从学校学来的标准方法不管用。如果那是围道积分或级数展开,他们都懂得怎么把答案找出;现在他们却碰壁了。这时我便使出“积分符号内取微分”的方法——这是因为我有一个与众不同的工具箱。当其他人用光了他们的工具,还没法找到解答时,便把问题交给我了!

那本书指的是伍兹(woods)著的《高等微积分学》,是费曼的高中物理老师给他看的,因为费曼在课堂上总爱捣蛋。从这段描述可以看出这种方法是一个“独门秘笈”,往往出其不意、攻其不备!看到这里,我就深深被这个方法吸引了,于是下定决心要学会它。

情节二:原子弹外传(P96)

不过我的运气往往很好,当他们向我解释碰到的困难时,我会冲口说出:“为什么不试试积分符号内取微分的方法?”在半小时后,他们忙了3个月的问题居然就这样解决了。因此,靠着我那与众不同的数学工具,我也作出小小的贡献。从芝加哥回来以后,我向大家报告:实验中释放出多少能量,原子弹将会是什么样子等等。

看,费曼总是像个小飞侠一样,让人啧啧称奇于他的天才!我想,这跟他善于学习各种各样的方法、然后浓缩为思想的精华加以利用是分不开的。

情节三:接受挑战(P183)

有一次我夸口:“其他人必须用围道积分法来计算的积分,我保证能用不同方法找出答案。”

于是奥伦便提出一个精彩绝伦、该死的积分给我。他从一个他知道答案的复变函数开始,把实部拿掉,只留下虚部,结果成为一道非用围道积分法不可的题目!他总是让我泄气得很,是个很聪明的人。

这里“围道积分法”指的是用复分析的方法来求实积分,也是一种很好的方法,但费曼说他“始终没有学会”围道积分。由此可见,“费曼积分法”不是万能!但是这也更让我有了接受挑战的冲动和决心!

我喜欢一些技巧性的东西,因为着实有趣,但是不仅仅当它它技巧来玩弄,而是研究它,想办法去拓宽他,试图将它变成一种研究的思想和方法。“费曼积分法”正是一个如此有趣的东西。为了求一个函数的定积分,我们先对它以一个参数求导,然后再以不同变量积分两次。这样把直接的积分程序变成了“求导——积分——积分”三个步骤,貌似有点化简为繁,但是正因为这样操作,达到了意想不到的效果!在BoJone看到,这是一种“先弃后取”、“欲擒故纵”的战术,自然会妙笔生花!

文字就不多说了,具体来看实例:

求积分:$F(a)=\int_0^1 \frac{x^a-1}{ln x}dx$

对a求导
$\frac{d F(a)}{da}$
$=\int_0^1 \frac{\partial(\frac{x^a-1}{ln x})}{\partial a}dx$

由于后边只是对a求导,把x看成常数,把a看作自变量,因为$\frac{\partial x^a }{\partial a}=x^a ln x$,所以我们得到(积分

$\frac{d F(a)}{da}=\int_0^1 x^a dx$
$=\frac{1}{1+a} x^{a+1} |_0^1=\frac{1}{1+a}$

所以(再积分):$F(a)=\int \frac{1}{1+a}da=ln(a+1)+C$

这里有一个常数C,需要通过一个特例来确定它。当a=0时,原积分变成
$F(0)=\int_0^1 \frac{1-1}{ln x}dx=\int_0^1 0dx=0$

即$0=ln(0+1)+C$,所以C=0,换言之:
$\int_0^1 \frac{x^a-1}{ln x}dx=ln (a+1)$

这个例子基本包含包含了“费曼积分法”的所有程序。可以发现,通过这样绕来绕出,居然让我们轻松地得出了正确答案。这就是“化简为繁”带来的好处!亲爱的读者们,如果你们还没有弄清过程,那么请再细细阅读一下这个例子,相信你会有所收获的!如果你还觉得意犹未尽,那么在下一篇文章里,BoJone将会和你更详细地探讨关于“费曼积分法”的细节。


转载到请包括本文地址:http://kexue.fm/archives/1615/

如果您觉得本文还不错,欢迎点击下面的按钮对博主进行打赏。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!