本创意装置来自牧夫天文论坛的zhangyf1997同好。

三连杆装置——“鱼”.PNG

结构:
1、A、B为两定点,可看作有刚性杆连接;
2、AC为动力杆,绕点A转动;
3、BD为从动杆,CD为连杆。

长度数据:
1、CD=AB=$\sqrt{2}$;
2、AC=BD=1。
3、E是CD中点

求:E点的轨迹方程(即图中黑色那条,很有趣吧?)

为了求出本题的曲线方程,BoJone依旧采用向量的方法,但是这一次有点特殊,采用“质点法”记号。在《绕来绕去的向量法》中,BoJone学到了一个称之为“质点法”的东西,当然也不是什么神秘的新的东西,在我看来,它就是一种向量法的简便记号,即把向量$\vec{AB}$写成$B-A$(两个点相减),并且定义$AB$就是两个向量的点积$\vec{OA}*\vec{OB}$,其余都没有太大变化。只要在运算过程中记住:1、注意要使用明显的符号把“点”与“数”区分开来,不至于混淆;2、向量没有除法,不能随便在等式两边随便约去一些向量。

言归正传,在本题中,以A为原点,AB为x轴建立坐标系,可以写出:
$B=(\sqrt{2},0)$
$2E=C+D$————(1)
$1=C^2=(D-B)^2=D^2+B^2-2DB$————(2)
$2=B^2=(D-C)^2=D^2+C^2-2DC$————(3)

由(1)得$C=2E-D$,两端平方得
$1=4E^2+D^2-4DE$————(4)

将$C=2E-D$代入(3)得$1=D^2-2D(2E-D)=3D^2-4ED$————(5)

联合(4)(5)得到$2E^2=D^2$,将其代入(5)得到$1=6E^2-4ED$,代入(2)得$2DB=1+2E^2$。至此,向量的工作完成了,接下来我们只有回到坐标系了(向量已经帮助我们将问题化简成一元一次方程组了)。设$E=(x,y),D=(D_1,D_2)$,那么有
$6(x^2+y^2)-1=4D_1 x+4D_2 y$
$1+2(x^2+y^2)=2\sqrt{2} D_1$

解得到$D_1=\frac{1+2(x^2+y^2)}{2\sqrt{2}},D_2=\frac{6(x^2+y^2)-1-4D_1 x}{4y}$

由$2E^2=D^2$得$2(x^2+y^2)=D_1^2+D_2^2$,将上面解得的$D_1,D_2$代入后化简即得轨迹方程,这是一个极度复杂的过程..

$2(x^2+y^2)=(\frac{1+2(x^2+y^2)}{2\sqrt{2}})^2+(\frac{6(x^2+y^2)-1-4(\frac{1+2(x^2+y^2)}{2\sqrt{2}}) x}{4y})^2$

一个比较“简单”的展开结果为:
$8 x^6-24 \sqrt{2} x^5+24 x^4 y^2+44 x^4-48 \sqrt{2} x^3 y^2-8 \sqrt{2} x^3+24 x^2 y^4+56 x^2 y^2-10 x^2-24 \sqrt{2} x y^4-8 \sqrt{2} x y^2$
$+2 \sqrt{2} x+8 y^6+12 y^4-10 y^2+1=0$

想不到居然是一个六次曲线!不过,还可以稍稍化简一些,这个曲线由两部分组成:
$2y^2 +2 x^2= 2 \sqrt(2) x+1$
$4(y^2+x^2+1-\sqrt{2} x)^2=8 x^2-8 \sqrt{2} x+5$

由于运算过程实在太过复杂,就连我这个很喜欢手算的人也不想算下去,因此,这些结果都是wolframalpha完成的。

有读者能够提供更简单的方法的话,欢迎告知BoJone。


转载到请包括本文地址:http://kexue.fm/archives/1168/

如果您觉得本文还不错,欢迎点击下面的按钮对博主进行打赏。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!